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Abstract 

The physical bases of large eddy simulation and the subgrid scale 

modeling it employs are studied in some detail. This investigation 

leads to a new scale-similarity model for the subgrid-scale turbulent 

Reynolds stresses. "Exact" tests of this model based on results of full 

simulations of homogeneous turbulent flows show that it correlates well 

with the subgrid-scale Reynolds stresses but does not correlate well 

with eddy viscosity models. This model is not dissipative; to obtain 

all of the desired properties, one needs to take a combination of this 

model with an eddy viscosity model. Tests of the combined model yield 

better correlations than a pure eddy viscosity model. The IIIOdel also 

performs better in large eddy simulations. 

A "defiltering" method for large eddy simulation has also been 

developed; it can predict accurately the full turbulent .kinetic energy 

from the properties of large eddies and thus allows us to compare simu­

lation results against experimental data. This method has been tested 

against experimental data for homogeneous turbulence with excellent 

results • 

The effects of system rotation on isotropic turbulence have been 

studied, and apparently contradictory experimental results are ex­

plained. The main effect of rotation is to increase of the transverse 

length scales in the rotation direction, which results in a decrease of 

the rate of dissipation. Experimental results are shown to be affected 

by conditions at the turbulence-producing grid, which make the initial 

states a function of the rotation rate. A two-equation model which ac­

counts for these effects of rotation has been proposed. This model 

predicts all of the experimental results accurately. 

Large eddy simulations of homogeneous shear flows have been carried 

out with and without the scale-similarity model. The turbulence kinetic 

energy of Champagne, Harris, and Corrsin (1970) is predicted accurately. 

The large eddy simulation results presented are intended to complement 

the data. A closure Reynolds stress model for these flows has been pro­

posed. This model compares well with experimental data and other turbu­

lence models in homogeneous turbulence. Unlike previous models, this 

model accounts for the effects of system rotation. 
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Large eddy simulations of homogeneous shear flows with system rota­

tion have been carried out. The results agree in general with those 

obtained by linear theory and other methods.' However, two limiting 

cases with Richardson number zero which are predicted identically by 

linear theory are shown to be different. In these cases, nonlinear 

interactions cause significant changes in the statistical properties of 

the flows. 
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Nomenclature 

Aij Mean velocity gradient tensor. 

Coordinate transformation tensor, Section 2.2, Eqs. (2-8), 
(2-16), and (2-21). 

bij Time-averaged Reynolds stress anisotropy tensor, Eq. (8-7), 

< ~i~j >/< ~~ > - °ij/3 

c Model constant, Eq. (4-15). 

cl Model constant, Eqs. (7-8) and (8-8). 

c2 Model constant, Eqs. (7-8) and (8-8). 
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cm Model constant, Eqs. (6-10) and (6-14). 
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G 

Model constant, Eq. (8-7). 
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k Wave vector. 

ki Component of the wave vector in the i-direction. 
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L Length scale of the large eddies of the full flow field, Eqs. 
(5-4) and (5-6). 

Length scale of the large eddies of the filtered flow field, 
Eqs. (5-5) and (5-6). 
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(8-17) • 
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= p"/e + u i u i /3. 

= -P"/p + 11
i
U/3. 

Q2 Turbulence intensity of full flow field, < orui >. 
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Chapter I 

INTRODUCTION 

1.1 Motivation 

The variety of turbulent flows is enormous, and knowledge of them 

has important engineering applications. Despite a century of work on 

turbulence, its behavior is not well understood. 

The basic equations that govern turbulent flows are known, namely, 

those of conservation of mass, momentum, and energy. Due to their 

complexity, most information about turbulent flows is obtained from 

experiments. However, the increasing availability of large scientific 

computers has made numerical simulation of turbulent flows possible. 

The results of these simulations can be regarded as numerical experi­

ments which add to the understanding of turbulence gained th~ough 

laboratory experiments. The aim of this work is to use three­

dimensional numerical simulations of turbulent flows to increase 

understanding of turbulence phenomena. 

The large range of length and time scales present in turbulent 

flows makes full simulation of them impossible, except at low Reynolds 

numbers. To date, valid simulations of homogeneous turbulent flows at 

Reynolds numbers (based on the Taylor m!croscale) of less than 70 have 

been fully simulated (Orszag et al., 1971; Clark et al., 1977; Rogallo, 

1980, 1981; Feiereisen et al., 19tH; Shirani et al., 1981). Further­

more, these simulations require large, fast computers, such as the 

ILLIAC IV or CRAY-1. Since mean rotation, strain, and/or shear cause 

the size of the large eddies to increase more rapidly and to develop 

anisotropy, full simulations of flows containing these ef~ects are 

limited to even smaller Reynolds numbers. 

Experimental evidence indicates that the larger eddies of turbu­

lence are flow-dependent, while the smaller ones are more universal. 

The larger eddies are responsible for most of the production, convec­

tion, and redistribution of the energy, while the smaller eddies are 

mainly responsible for the dissipation of the energy. These observa­

tions lead to the conclusion that large-eddy simulation (LE8), which 
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resolves the large eddies and models the small ones, is an attractive 

and less expensive alternative to full simulation (Smagorinsky, 1963; 

Deardorff, 1970; Kwak et al., 1975; Shaanan et al., 1975; Mansour et 

al., 1978; Cain et al., 1981; Antonopoulos, 1981). The assumptions 

about the small eddies are not entirely correct in wall-bounded flows; 

however, LES has been successfully applied to channel and annular flows 

(Schumann, 1973; Grotzbach, 1976; Moin et al., 1978, 1981; Kim et al., 

1980). 

Most large eddy simulations have used simple eddy-viscosity models 

to model the small eddies of the turbulence. These models can produce 

the correct average energy removal from the large eddies, but they 

poorly represent the effects of the small eddies on the large eddies on 

a local basis (Clark et al., 1977; McMillan et al., 1979, 1980; Bardina 

et al., 1980). Thus, there is a need for improvement in modeling for 

LES. 

A drawback of LES is that it does not compute the full turbulent 

flow field. Since experiments do provide the full turbulence quanti­

ties, comparisons between LES and experimental results can be difficult. 

A "defiltering" method which enables us to compare complete statistical 

quantities from LES and thus allow accurate comparison with experimental 

observations is required. 

Simpler methods of predicting turbulent flows are usually used for 

practical applications. The most complex methods in common use at the 

present time are one-point closure methods. In these methods, time­

averages at a single spatial point are computed, and all of the scales 

of the turbulence need to be modeled. There is a wide variety of such 

models; they can be classified according to the number of differential 

equations used in the model. Current state-of-the-art models are cap­

able of predicting many flows with reasonable accuracy. The 1980-81 

AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (Kline et al., 

1981) showed some of the strong points as well as the shortcomings of 

these models. None of the models presented had any provision for the 

effects of mean rotation. As rotation affects many turbulent flows of 

technological Significance, a model which accounts for it is a neces­

sity. 
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1.2 Objectives 

The main objectives of this research are: 

1) to study the validity of existing subgrid scale models 
for large-eddy simulation; 

2) to develop improved subgrid scale models; 

3) to find methods of computing the complete one-point aver­
age quantities from large-eddy simulation results; and 

4) to use the results of numerical simulations to improve 
one-point-closure turbulence models for flows with mean 
rotation. 

The basic assumptions of large-eddy simulation will be analyzed. 

This analysis will lead to a method of predicting full turbulence quan­

tities from large-eddy simulations. This analysis leads to considera­

tion of the scales of the turbulence involved in the transfer of energy 

between the large and small eddies. In turn, this allows us to better 

understand subgrid scale models for large-eddy simulation and leads to 

the development of new subgrid scale models called scale-similarity 

models. These models shall be tested by using full simulations of homo­

geneous turbulence and by using them in large-eddy simulations. 

Large-eddy simulations will be used to provide better understanding 

of the physical effects of rotation and shear on the turbulence. We 

shall use this knowledge to develop a one-point closure turbulence model 

which accounts for the effects of rotation. This model shall be tested 

against experimental observations of homogeneous turbulent flows. 

Cases studied include isotropic turbulence, mean rotation and mean 

shear applied to initially isotropic turbulence, and mean shear of tur­

bulence in a rotating coordinate frame. 
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Chapter II 

MATHEMATICAL FORMULATION AND NUMERICAL METHOD 

This chapter describes the governing system of equations and the 

numerical method used to simulate homogeneous turbulent shear flows in a 

rotating frame. This method is also able to simulate homogeneous iso­

tropic turbulent flows and homogeneous turbulence in the presence of 

rotation and/or shear. 

2.1 Mathematical Formulation 

The basic equations of motion for an incompressible fluid having 

constant viscosity are the Navier-Stokes and Continuity equations: 

a~j = 

ai. 
J 

o 

(2-1) 

(2-2) 

where i,j = 1, 2, 3, and repeated indices in any term imply summation. 

We are interested in flows in which both the statistical properties 

of the turbulent fluctuations and the gradients of the mean velocity are 

homogeneous, i.e., independent of position in the flow. 

For homogeneous flows, the mean velocity field Ui must be linear 

in the spatial coordinates: 

= (2-3) 

where the tensor ~j is constant or, possibly, a function of time. 

The basic equations of motion for the turbulent component of the 

flow field are obtained by decomposing the flow quantities (uiP) into 

mean (U i , < P » and fluctuating parts: 

u~ (2-4) 
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p" = p - < p > (2-5) 

Substituting these into the equations of motion and subtracting the mean 

equations, noting that 0 < uiuj > /OXj ... 0 due to the assumption of 

homogeneity of the turbulence, we obtain the following equations for the 

fluctuating components: 

ou" 
_i+ U 
ot j 

ou': 
_J ... 0 
OX

j 

... (2-6) 

(2-7) 

There is no exact analytical solution of the equations of motion for the 

turbulence fluctuations, and numerical approximations are required. In 

particular, the simulations will be carried out in a finite domain with 

specified boundary and initial conditions; these are described in Sec­

tions 2.7 and 2.10, respectively. In this section, we shall only men­

tion that we have chosen to apply a coordinate transformation to the 

equations of motion in order to permit use of periodic boundary condi­

tions. Another option could have been to specify some sort of random 

boundary conditions, but the assumption of homogeneity of the turbulence 

fluctuations imposes too many restrictions and makes this difficult even 

in the simplest (statistically) case of isotropic turbulence, for which 

Aij ... O. Therefore, we prefer to use periodic boundary conditions. 

This cannot be done to Eq. (2-6), because the coefficient Uj is not 

constant in space. A coordinate transformation which transforms these 

equations into a system with constant coefficients is described in the 

next section. These equations admit periodic boundary conditions. 

2.2 Coordinate Transformation 

The coordinate transformation required to admit periodic solutions 

is based on Batchelor's (1953) rapid distortion theory. This transfor­

mation was first applied to the solution of the incompressible Navier­

Stokes equations by Rogallo (1977) and, more recently, it was used by 

Rogallo (1981), Feiereisen et al. (1981), and Shirani et al. (1981). 

This transformation transforms the fixed coordinate system (i) into a 
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convected coordinate system (~); i.e., one moving with the mean veloc­

ity field. 

The transformation is represented by 

(2-8) 

and 

... 
t = t (2-9) 

where the tensor Bij is only a function of time and the magnitude of 

the constant mean velocity gradient. The velocity field ui is trans­

formed by: 

u" =: 
i 

-1 
Bijuj 

(2-10) 

which, together with the coordinate transformation (2-8), implies that 

the continuity equation (2-7) becomes 

-1 
oBjnun = 
o~ 

o (2-11) 

or simply 

o (2-12) 

because the tensor Bij is independent of the spatial coordinates and 
-1 

BijBjn = 0in. 

Under these transformations, Eqs. (2-8), (2-9), and (2-10), the 

momentum equations (2-6) become: 

(2-13) 

where the terms in parentheses are in one-to-one correspondence with the 

terms of Eq. (2-6). Multiplying Eq. (2-13) by the tensor 
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rearranging terms, and interchanging the names of the dummy indices r 

and i, we get 

(2-14) 

Following Rogallo (1977), the transformation tensor Bij is chosen to 

be the solution of the following set of ordinary differential equations: 

= 0 (2-15) 

subject to the convenient initial conditions: 

at t = 0 (2.16) 

Thus, the coefficient of the third term of Eq. (2-14) is made zero. The 

fourth term of Eq. (2-14) can also be simplified by noting that 

Differentiating by parts with respect to time, we get 

-1 
dBjk dBij -1 

Bij dt + Cit Bjk 

Multiplying times the tensor B;l gives 

dB;~ + -1 dBij -1 
dt Brt """'CIt Bjk 

and combining with Eq. (2-15), we get: 

-1 
dBrk -1 
at - ArjBjk ... 

.,. 0 

.. 0 

o 

Therefore, the momentum equation (2-14) becomes: 

~ ~ o2u uUi uuiuj -1 1 ~ .. i 
~ + oX

j 
- + 2BirArjBjkUk ... - p BirBjr ~:j + v B 1jBnj ox

1
ox

n 

8 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

(2-21) 
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which has constant coefficients in space and therefore admits periodic 

solutions. 

2.3 Homogeneous Rotating Flow 

Here, the linear transformation of the preceding section is partic­

ularized to the case of a constant rate of rotation (Q) about the 

x3-axis • 

The mean velocity gradients for this case are 

= (2-22) 

The transformation tensor obtained by solving Eqs. (2-15) and (2-16) is: 

= 
t. cos Qt 

\- Si~ Qt 

sin Qt 

cos Qt 

o 

and the system of equations in a rotating frame is: 

o 

where the reduced pressure P is 

P .. 

(2-23) 

(2-24) 

(2-26) 

The second term on the right-hand side of Eq. (2-25) represents the 

Coriolis force. The centrifugal force is compensated by mean pressure 

gradients (see Greenspan, 1968, pp. 5-6). 
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2.4 Homogeneous Shear Flow in a Rotating Frame 

Here, the linear transformation is particularized to the case of a 

constant shear rate in the rotating frame of the previous section. We 

thus obtain the equations describing homogeneous shear flow in a rotat­

ing frame, which is an idealization of turbulent flows that occur in 

geophysics, oceanography, and turbomachinery. We emphasize that these 

equations do not represent a flow with rotation and shear in a fixed 

frame. Equations for this case can be obtained directly from Eqs. 

(2-21) • 

The mean-velocity gradients in the rotating frame are: 

.. (2-27) 

The transformation tensor obtained by solving Eqs. (2-15) and 

(2-16) is: 

-St 

1 

o 
(2-28) 

The system of equations for the fluctuating components of the 

velocity with respect to the convective frame is obtained by applying 

the velocity decomposition and linear transformations to Eqs. (2-24) 

and (2-25). The only significant differences between Eqs. (2-24) and 

(2-25) and the original system of equations (2-1) and (2-2) are the 

terms representing the effects of the coriolis force in Eqs. (2-25). 

However, these terms are not affected by the coordinate transformation, 

because they are linear in the velocity components; they are affected 
/ 

only by the velocity transformation, Eq. (2-10), which is a straightfor-

ward transformation. Therefore, the system of equations with respect to 

the convective frame is obtained from Eqs. (2-12) and (2-21) directly, 

except for the coriolis force terms, whose fluctuating components trans­

form according to Eq. (2-10). Consequently, Eq. (2-25) becomes: 
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a - ~:j [Oij - Stoil 0jZ - StoiZ 0jl + S2t
2 

Oil OJ 1] 

+ [2(0 - S) Uz + 20St(u1 + St UZ)] Oil 

- ZO(U1 + St U2 ) 0i2 

oUi 2 2 
+ V 6xj6~ (Ojk - 2St 0j1 ~ + S t 0jl0k1) (2-Z9) 

which are to be solved together with the continuity equation (2-24). 

This system of equations contains as special cases homogeneous iso­

tropic turbulence (S = 0 = 0), homogeneous rotating turbulence (S - 0), 

and homogeneous shear flows (0 ... U), where 0 is the frame rotation 

and S is the mean shear rate in the rotating frame. 

2.5 Definition of Filtered and Subgrid-Scale Fields 

In large-eddy simulation, each flow variable is decomposed in a 

filtered (or large-scale) component and a residual (or subgrid-scale 

SES) This decomposition is represented as: 

u = u + u' (2-30) 

where the large-scale component is defined according to Leonard (1974) 
as: 

(2-31) 

and the integral extends over the whole flow field, G(.!. - L; l:i
f

) is 

the filter function, and l:if is the width or characteristic length 

scale of the filter. 

The selection of the filter function is an important step in large­

eddy simulation. Kwak et ale (1975) analyzed several filter functions 

and found that a Gaussian filter is physically and mathematically con­

venient; we shall adopt it. The energy in the filtered flow field is a 

function of the filter width and the Reynolds number and is often less 
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than half the total energy (Kwak et al., 1975), Shaanan et al., 1975). 

Calculation of the full-energy spectrum from the filtered-energy spec­

trum is unreliable, because the process amplifies numerical errors 

excessively. However, the Gaussian filter is smooth and produces 

filtered energy spectra similar to the energy spectra of flows at lower 

Reynolds numbers and makes the filtered velocity field behave like a 

real flow field. Also, unlike sharp' filters, which may lead to an 

initial reduction of the length scales in homogeneous turbulence, 

Gaussian filters always produce growth of the large-length scales. 

The Gaussian filter is: 

(2-32) 

2.6 Governing Equations of the Filtered Flow Field 

The governing equations of the filtered flow field are obtained by 

applying the filter function, Eq. (2-32) to the equations of motion of 

the full field, Eqs. (2-24) and (2-29). The resulting equations are: 

QUi oP 2 2 
at" = Hi - ox. (Oij - St 0U Oj2 - St 0i2 0j1 + S t 0U Oj1) 

J 

where 

and the SGS Reynolds stresses, "tij' are 

1 "tij = Rij -"3 ~Oij 

where 

Rij = uiuj - uiuj = uluj + ,- -, 
uiuj + uiuj 
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The continuity equation for the filtered field is: 

aU
i 

-- = o (2-37) 

It is convenient to replace the continuity equation (2-38) by a 

Poisson equation for the reduced pressure. The latter is obtained by 

taking the divergence of Eq. (2-33) and applying the continuity equa­

tion: 

1:1 __ 

ax 
i 

(2-38) 

Equations (2-33), (2-37) and (2-38) constitute a closed system of 

partial differential equations, except for the Reynolds stresses 'tij 

which need to be modeled. 

Models of the Reynolds stresses shall be presented and analyzed in 

the following chapters. For now, we note that the models represent 

'tij in terms of derivatives of the filtered velocity field. The models 

we shall investigate have the form: 

(2-39) 

where v't is an eddy viscosity, which, following Smagorinsky (1963), is 

given by: 

\I 1:1 (c 6. )2 .. '28 8 
't s f V ij ij 

8ij is the strain rate. Mij will be defined later. 

The governing equations now become: 

and 

with 
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(2-40) 

(2-41) 
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,.. 

(2.-43) 

where various models of the eddy viscosity, v~, and scale-similarity 

models, ~j' shall be considered in the next chapters. 

2.7 Boundary Conditions 

Numerical simulation of homogeneous turbulent flows in a finite 

domain requires the specification of boundary conditions. Since turbu­

lent motions at any point of the flow affect the motions through all the 

domain due to the pressure field, the boundary conditions will affect· 

all the numerical results. The choices of boundary conditions are also 

restricted by the assumptions of turbulence and homogeneity of the tur­

bulent fluctuations. One option could be to specify some sort of random 

boundary conditions; however, turbulent motions are not random. From a 

statistical point of view, the assumption of homogeneity on the turbu­

lent fluctuations implies that the mean value of functions of the turbu­

lent fluctuations must be independent of spatial position. According to 

Townsend (1976), "even in the simplest (statistically) of turbulent 

flows--isotropic turbulence--the number of these functions necessary in 

the theory is large and, for normal turbulent flows whose asymmetry 

imposes still more organization, an even larger number seems to be 

necessary. Therefore, in order not to violate the assumptions of 

turbulence and homogeneity, it is convenient to specify the boundary 

conditions as functions of the variables in the numerical domain. 

Following previous simulations (Mansour et al., 1977; Rogallo, 1977 and 

1981; Ferziger et al., 1981; Shirani et al., 1981, and many others), we 

have chosen to specify periodic boundary conditions; thus, the assump­

tions of turbulence and homogeneity are preserved. These boundary 

conditions are also consistent with the system of equations developed 
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earlier in this chapter. 

formulation is: 

for the xl-direction, their mathematical 

(2-44) 

(2-45) 

where Ll is the length of the computational domain in the xCdirec­

tion. Similar conditions are applied in the other two directions. 

2.8 Approximation of Spatial Derivatives 

Approximations which compute the spatial partial derivatives in 

terms of the data located at grid points in the numerical domain are 

required. The computational grid spacing will be uniform and half the 

filter width, as recommended by McMillan and Verziger (1979). Since the 

system of equations admits periodic solutions, we shall use the pseudo­

spectral method, which has been used frequently in simulations of homo-

geneous turbulence and is fast and accurate. Since this method is 

applied independently in each direction, we shall consider only the one­

dimensional case in this section. Thus, any function u(Xj) is approx­

imated by a discrete Fourier series: 

N/2 

2: 
m=-N/2+1 

A 

u(k ) 
m 

(2-46) 

and its spatial derivative is given by another related discrete Fourier 

series: 

where 

and 

A 

u(k ) m 

.. N/2 

~ 
N ma-_ +1 
2 

N-l 

A ik x. 
ik u(k ) w m J 

m m 

a ~ 2: u(xj ) 
-ik x 

m j 
e 

j-o 

N - number of grid points 
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= t.j j a 0, 1, 2 ••• , N-l 

N N ~ 
m = -2+ 1, -2 + 1, ••• ,0, ••• , 2 

This .method is made efficient by the Fast Fourier Transform algorithm 

developed by Cooley and Tukey (1965), which is particularly efficient 

for where n is an integer. 

even number, the Fourier component 

to the lack of information about it. 

2.9 Time Advancement 

In this case, since N is an 

is set equal to zero, due 

The time-advancement is the fourth-order Runge-Kutta method, which 

is stable and accurate (see Feiereisen et al., 1981, pp. 29-30). The 

time step is variable and is determined by requiring the Courant number 

to be 0.5. The fourth-order Runge-Kutta method used is: 

-(n) 
-(1) -(n) t.t a~ 
u = u + 2 at 

-(1) 
-(2) -(n) t.t au 
u ... u +-2 at 

-(3) -(n) 
a~2) 

u = u + t.t CSt 

-:-:{n+l) -(n) t.t - - -- ( 

[

au(n) au'l) au'2) au'3)] 

u = ~ + 6 at + 2 at + 2 at + at 2.49) 

where the superscript (n) denotes the time step, and the superscripts 

(1), (2), and (3) denote time substeps. 

2.10 Alias Removal 

The nonlinearity of the equations of motion introduces the pos­

sibility of aliasing errors in numerical simulations. In a line of 

length Nt., where N is the number of mesh points and t. is the 

width of the mesh, we can resolve nondimensional wave-numbers in the 
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interval (- ~ + 1, ~). On the other hand, the nonlinear terms intro­

duce wave numbers outside this domain, and these are erroneously allo­

cated to wave-numbers inside the computational domain. To remove the 

aliasing, we use the "2/3 rule", which requires eliminating all compo­

nents at wave numbers outside the range (-;, ~). The results of all 

remaining products inside the domain (- ~ , ~) are alias-free (see 

Rogallo, 1981, pp. 46-47). 

2.11 Remeshing the Computational Domain 

The linear coordinate transformation applied to the governing equa­

tions moves the system of coordinates with the mean flow. The initial 

cubic computational box is distorted by the shear. This causes one 

dimension of the computational domain to become smaller than the large 

scales of the turbulence and the simulation is no longer accurate. To 

avoid this problem, the computational box is remeshed, as shown in Fig. 

2.1. This process is a coordinate transformation which is performed 

when the total shear reaches the value St D 1/2 and is given by 

(Xi) 1 
St=- "2" 

= (2-50) 

Fig. 2.1. Remeshing. 
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This transformation produces Fourier modes outside the computational 

domain in the 2-direction. These aliased terms are removed by applying 

the "2/3 rule" described in the previous section. This procedure has 

been successfully applied in full simulations of homogeneous shear flows 

(see Feiereisen et al., 1981, pp. 32-33; Shirani et al., 1981, p. 18). 

2.12 Initial Conditions 

Full and large-eddy simulations require an initial turbulent 

velocity field. Experimental results do not provide this information, 

and we have to provide a velocity field which is consistent with what-

ever information is available. Of course, for incompressible fluids, 

the initial velocity field must also be divergence-free. 

In order to generate the initial velocity field, we have developed 

a procedure which is easier and more efficient than the ones used in 

previous simulations. The basic steps are: 

a) A random number is assigned to each component of a vector 

stream function at every grid point. The random values can be 

biased to produce an anisotropic velocity field. 

b) A divergence-free velocity field is constructed by taking the 

curl of the vector stream function. The numerical operator 

used to take the curl must be the one used to define the 

divergence. 

c) The velocity field is Fourier transformed, and its three­

dimensional energy spectrum is obtained by averaging the 

kinetic energy over spherical shells 

A A 

Ef (k) ... 21dl < Ui (k) u: (k) > (2-51) 

A 

- -* where < ui (k) ui (~) > is twice the average kinetic energy per 

unit mass in the spherical shell. 

d) Each Fourier mode in a spherical shell is multiplied by a 

constant which gives this shell the desired energy content. 

e) The velocity field is transformed back into real space. 
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Since most experimental results do not provide the three­

dimensional energy spectrum of the turbulence, we shall use the one of 

Comte-Bellot and Corrsin (1971). The case chosen had a free-stream 

velocity of 10 mIs, a generating grid size M" 0.0508 m, and the 

initial position was at x/M'" 42 downstream of the generating grid. 

This energy spectrum was nondimensionalized with the turbulent kinetic 

energy and the rate of energy-dissipation. This normalization makes the 

large-scale part of the energy spectrum independent of Reynolds numbers 

in isotropic turbulence, according to Tennekes and Lumley (1972, p. 

267). Since filtering removes the small-scale part of the energy 

spectrum, we should have an initial three-dimensional energy spectrum 

which is representative of filtered isotropic turbulence • 
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Chapter III 

COMPUTER PROGRAMS ON lLLLAC IV 

3.1 The ILLLAC IV Processor 

The numerical simulations were performed on the ILLLAC IV, a very 

fast parallel computer. ILLLAC IV consisted of a control unit and 64 

parallel processors and was capable of performing as many as 107 

arithmetic operations per second. Each processor had 2096 words of 

local memory, and the system contained a disk memory with a capacity of 

about 32 x 106 words. The performance of a code was largely deter­

mined by the management of the data transfer between the disk and the 

processor memories. The data-management system chosen was the "Pencil 

System" developed by Pulliam and Lomax (1979). This system transfers 

arrays of 8 x 16 x N words at a time, where N is the number of mesh 

points in a given direction, which can be 16, 32, or 64. We chose N-

32 in order to have enough resolution to simulate the large scales of 

various flows. 

3.2 Computer Programs 

Several computer codes were used in the numerical simulations. One 

code generated the initial turbulent velocity field, according to the 

procedure described in Section 2.10. 

The main code advanced the velocity field using the fourth-order 

Runge-Kutta method described in Chapter II. 

computed at each time step. 

Various statistics were 

A third code computes spectra and statistics derived from the vel­

ocity field generated by the main code. 

Finally, various codes do data reduction and prepare data for plot­

ting. These ran on a CDC 7600 computer. 

The main ILL lAC code with 32 x 32 x 32 mesh points required a 

running time of less than 1.5 seconds per time sub-step. This running 

time is about 40% faster than the codes used by Feiereisen et ale (1981) 

for full simulations of compreSSible, homogeneous shear flows, and 

Shirani et ale (1981) for full simulations of mixing of a passive scalar 
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in homogeneous shear flows. The improvement in the running time was due 

to the design of the code according to suggestions made by Drs. It. 

Rogallo, E. Shirani, W. Feiereisen, P. Moin, and J. Kim. 

3.3 Tests of the Main Code 

Several tests were performed in order to check the performance of 

the codes. We shall describe some of the most significant tests of the 

main code: 

• Simulations of two-dimensional, incompressible Taylor-Green vorti­

ces were performed. The solution has the following form: 

2 2 -(k
1
+k

2
)vt 

u1 = - k2 cos(k1x) sin(k2 y) e 

= 

Several values of the wave-numbers k 1 and kl and all three 

combinations of coordinates were tested. The filter width and the 

model constants were set to zero. The solution showed no change 

when the kinematic viscosity was set equal to zero. This is the 

correct result. 

The solution showed less than 10-4% difference with respect 

to the exact value of the velocity components after 100 time steps 

in the viscous cases. 

• The shearing transformation was tested by performing a full simu­

lation of a homogeneous shear flow. The time development of the 

components of the turbulence kinetic energy and shear stress com­

pares well qualitatively with those of Shirani et ale (19H1) and 

Feiereisen et ale (1981). This transformation was also tested by 

simulating the experimental results of Champagne, Harris, and 

Corrsin (1970) with accuracy. This simulation is described 

further in Chapter VIII. 

• The filtering process and the Smagorinsky model were tested by 

simulating the experiment of Comte-Bellot and Corrsin (1971) on 

the decay of homogeneous isotropic turbulence; the experimental 
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results are predicted with great accuracy. This will be described 

further in Chapter V. 

3.4 General Comments About the Simulations 

All simulations require some approximations, which produce errors. 

In our case, the main approximations are due to modeling of the Reynolds 

stresses and the size of the computational domain. Comparisons with ex­

perimental data are also affected by insufficient information about the 

initial turbulence velocity field. Various models will be presented and 

tested in the following chapters; their differences will be discussed 

later. The initial velocity field is computed as described in Section 

2.10 and initial velocity field does not have all the turbulence statis-

tics of an experimental flow field. Higher-order statistics require 

time to develop; the velocity-derivative skewness reaches experimental 

levels only after a number of time steps. The length of this develop­

ment time is a function of the model of the Reynolds stresses, the shape 

of the initial energy spectra, and the size of the computational domain. 

The behavior in the development region of the turbulence intensity 

and velocity-derivative skewness (see Figs. 6.9 and 6.11) agree with 

large-eddy simulations performed by Kwak et ale (1975) and Shaanan et 

ale (1975), who used the Smagorinsky model, and by Mansour et ale 

(1977), who used the vorticity model. 

The size of the computational domain determines the size of the 

largest eddies that can be simulated. Since the eddies tend to grow 

with time in many turbulent flows, the largest eddies will eventually 

exceed the size allowed by the computational domain, and the periodic 

boundary conditions and the calculation becomes invalid. The region of 

validity of the simulation can be monitored by examining the length 

scales during the Simulation; the simulation must be stopped when these 

scales exceed these limits. 
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Chapter IV 

THE BASIS OF LARGE-EDDY SIMULATION 

This chapter will analyze the basic assumptions of large-eddy simu­

lation (LES). We shall also look at some unresolved issues, especially 

those relating to subgrid-scale (SGS) modeling. Understanding of these 

issues is essential if we are to find improved models for LES. 

4.1 Basis of Large-Eddy Simulation 

The main objective of large-eddy simulation (LES) is to simulate 

turbulent flows. In LES, the large-scale motions are resolved, so no 

model is needed for them. However, modeling the effect of the small 

eddies on the large eddies is required. LES is less sensitive to tur­

bulence modeling than the more commonly used one-point closure methods, 

in which all turbulent scales are represented by models. 

Turbulent flows contain eddies of various sizes, and there is no 

single length scale which differentiates large and small eddies. At high 

Reynolds numbers there is an inertial sub-range in the energy spectrum 

in which there is neither significant energy production nor dissipation, 

and the distinction is easier to make. In this case, filtering the 

energy spectrum so as to retain all of the structures below some wave­

number in the inertial sub range provides a natural definition of the 

large eddies. When there is no inertial subrange, the distinction is 

necessarily more arbitrary. A schematic of the decomposi tion of the 

velocity field is shown in Diagram 6.1. 

Large-scale 
(u) 

Full Field (u) 

/ -'" fi ld Interactions via S 11 1 fi Id e ...... .... ma -sca e e 
Reynolds Stresses (~r a ~ - u) 

Diagram 6.1. Flow field decomposition. 

The effects of the small eddies are represented by the Reynolds 

stresses in the equations of motion for the large-scale field; cf. Sec­

tion 2.6. 
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LES requires large and fast computers. Since the range of scales 

of turbulent motions increases with Reynolds number, computer capacity 

may not allow resolution of the large-scale motions according to the 

definition above. The scales of motion represented in LES is shown in 

Diagram 6.2. 

Filtered Flow 
(U) 

Full Flow Field 

/ 
Fi ld 

Interaction via e .. _ 
Subgrid Scale Model 

Subgrid-scale Flow Field 
(~' .. ~ - U) 

Diagram 6.2. Flow field decomposition in LES. 

The filtered field u is obtained by filtering the full flow field ~; 

cf. Section 2.5. The SGS flow field u' is obtained by subtracting the 

filtered field from the full field. The interaction between the fil­

tered and SGS fields is represented by a model of the Reynolds stresses. 

The difference between the definitions used in Diagrams 6.1 and 6.2 lies 

mainly in the SGS model and the choice of filter width or cutoff eddy 

size. 

LES requires the model to represent the effects of the SGS field on 

the filtered field. Furthermore, estimation of complete turbulence 

quantities from the results of LES also requires modeling of the SGS 

field. The assumptions made in this model must be consistent with those 

made in the Reynolds stress model. 

4.2 Usual Assumptions of Eddy-Viscosity Models 

Subgrid scale models for LES have been based on ideas used in one­

point closure models. However, the differences between the methods are 

significant and require careful consideration. 

The simplest and most popular model in LES is the eddy-viscosity 

model, which assumes that the SGS Reynolds stress deviator tensor, 

'tij' is proportional to the local strain rate tensor of the filtered 

field, Sij' so that: 

.,. - 2v S 
't ij 

(4-1) 

where v't is the eddy viscosity. 
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The eddy viscosity is assumed to be proportional to the product of 

the characteristic length and time scales of the SGS turbulence, 

v .... II q 
't' f 

(4-2) 

The filter width, llf' is used because it is the length-scale of the 

largest and, presumably, the most important SGS turbulence eddies. The 

velocity-scale q is related to the kinetic energy of the SGS motions 

by: 

1 2 
... - pq 

2 
(4-3) 

Furthermore, if the SGS turbulence is assumed to be in local equilibrium 
with the large-scale field, a reasonable approximation is: 

q 

where 

r51 ... ,2S S 
ij ij 

(4-4) 

(4-5) 

is the magnitude of the strain rate of the filtered field. Combining 

these equations, we have the eddy viscosity first proposed by Smagor­

insky (1963): 

(4-6) 

Mansour et al. (1978) proposed replacing Eq. (4-6) with: 

(4-7) 

where rwl is the magnitude of the local vorticity of the large scale 

field. 

The main advantage of eddy-viscosity models is that they are dissi­

pative, i.e., they are guaranteed to take energy out of the large scale 
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field. For the Smagorinsky model, the net rate of transfer of energy 

out of the filtered flow field is: 

e: 
f 

- < -'t S ) = 
ij ij 

(4-8) 

and is clearly positive. These models also produce accurate predictions 

of filtered quantities in at least some flows with just a single model 

constant, cf. Kwak et ale (1975), Shaanan et ale (1975), Mansour et ale 

(1978), and Moin et ale (1978, 1981). 

4.3 Some Unresolved Issues in Large-Eddy Simulation 

Some unresolved issues on LES were discussed by Herring (1977) and 

Ferziger and Leslie (1979). The chief of these are described in this 

section. 

4.3.1 Eddy Viscosity Models 

Eddy-viscosity models can be tested by using full simulations or by 

comparison with experimental observations. Full simulations of homo­

geneous turbulent flows allow us to make detailed comparisons of model 

predictions and exact values. However, at the present time, full sim­

ulations are restricted to low Reynolds numbers and simple flows, where 

periodic boundary conditions can be used. Experimental observations 

have neither of these restrictions but are not sufficiently detailed to 

permit detailed comparisons with models; indirect approaches must then 

be employed. 

Tests using full simulations show that eddy-viscosity models are 

able to maintain the correct mean energy balance of the large scale flow 

field while giving poor representations of the Reynolds stresses on a 

local basis (Clark et al., 1977). It thus appears that some of the 

assumptions on which eddy-viscosity models are based may be incorrect. 

We shall now look at some of these. 
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a. Stress-strain proportionality 

Clark et ale (1977), McMillan et ale (1979, 1980), and Hardina et 

ale (1980) have shown that the principal axes of the SGS Reynolds 

stresses are not aligned with the principal axes of the strain rate of 

the large-scale or filtered turbulence. These tests will be described 

in more detail in Chapter VI. 

b. Velocity scale in the model 

The velocity scale in the eddy-viscosity model has been assumed to 

be the velocity scale of the SGS turbulence, cf. Eqs. (4-2)-(4-4) and 

Lilly (1967), Deardorff (1971), Clark et ale (1977), and Main et ale 

(1978). The Smagorinsky (4-6) and vorticity (4-7) models do not use 

this velocity scale explicitly, but the matter deserves to be looked at. 

To study the problem of the velocity scale in more detail, we shall 

use LES of the decay of homogeneous isotropic turbulence. Figure 4.1 

gives the time history of the decay of the full and filtered turbulence 

intensities for the one case of the experiment of Comte-Bellot and Corr­

sin (1971). Figure 4.2 gives the initial filtered experimental spec­

trum, which served as the initial condition of the LES, while Figure 4.3 

gives the filtered-energy spectrum obtained both experimentally and by 

LES at the last station. The excellent agreement between LES and 

experiment indicates that the Smagorinsky model is able to maintain the 

correct energy balance and spectrum in this flow. In order to test the 

SGS velocity relation (4-4), we looked at the SGS turbulent kinetic 

energy (IKE); Figure 4.4 gives its time history. The "exact" SGS TKE 

was obtained by subtracting the filtered TKE from the full TKE, while 

the estimated SGS TKE has been obtained by using Eq. (4-4). The results 

have been normalized with their values at the last station in order to 

eliminate the influence of the model constant. Figure 4.4 indicates 

that the actual SGS TKE decays faster than the one obtained from the 

model. Thus, we conclude that the velocity scale of the eddy-viscosity 

model is not truly the velocity scale of the SGS turbulence. Although 

the Smagorinsky model appears to be valid for this case, at least one of 

Eqs. (4-2) and (4-4) must be incorrect. 

A new velocity scale for the eddy viscosity will be proposed in 

Chapter VI. 
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c. "Production equals dissipation" 

The argument that the production and dissipation of turbulent 

kinetic energy are equal in equilibrium flows has been used to derive 

turbulence models in one-point closure methods. In LES, this argument 

becomes the notion that the net rate of energy transfer from the large­

scale field equals the rate of dissipation of SGS energy. This is 

essentially the argument used to derive Eq. (4-4). However, this argu­

ment may not be valid in all flows. The SGS energy-dissipation rate may 

be greater or less than the rate of energy transfer to the SGS field in 

time developing flows. Figure 4.5 gives the time history of the rates 

of energy transfer and SGS energy dissipation in the isotropic turbu­

lence experiment of Comte-Bellot and Corrsin. The rate of energy trans­

fer is assumed equal to the rate of energy loss of the filtered field, 

because viscous dissipation accounts for less than 5% of the energy loss 

of the filtered field. The total energy dissipation rate is initially 

six times the rate of energy loss of the filtered field; this ratio de­

creases to about three at the later time. The difference between the 

rate of energy dissipation and energy transfer from the filtered field 

to the SGS field is due to the decay of the kinetic energy that was in 

the SGS initially. 

That the rate of energy transfer is almost always smaller than SGS 

dissipation in isotropic homogeneous turbulence can be shown by analyz­

ing the energy balance of the SGS flow field. This energy balance 

states that the rate of change of SGS TKE equals the net SGS production 

minus the net SGS dissipation; i.e., 

(p - P ) - (e: - e: ) 
f f 

(4-9) 

where q2/2 is the SGS turbulent kinetic energy, P - Pf is the net 

production of SGS TKE by mean strain, if any is imposed, e: - e:f is the 

net SGS dissipation of TKE; i.e., dissipation of SGS IKE minus the rate 

of energy transfer from the filtered field. Note that e:f' the energy 

transfer from the filtered field to the small-scale field, appears as 

dissipation to the filtered field. 
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In the decay of homogeneous isotropic turbulence, production of TKE 

is zero: 

p ... o (4-10) 

and the SGS TKE normally decays with time; i.e., 

< 0 (4-11) 

Thus, SGS energy dissipation in this flow is always greater than the 

rate of energy transfer from the filtered field; i.e., 

E > (4-12) 

Furthermore, we anticipate that this will be the case in other homogen­

eous turbulent flows as well. 

d. Smagorinsky constant 

The constant in the Smagorinsky model has been determined from 

theoretical arguments by Lilly (1967) as "" 0.2. Similar values were 

found through a full simulation of a low Reynolds number homogeneous 

isotropic turbulence by Clark et ale (1977), and by fitting the decay of 

homogeneous isotropic turbulence in LES by Kwak et ale (1975) and 

Shaanan et ale (1975). On the other hand, Deardorff (1970), Schumann 

(1975), and Moin and Kim (1981) found that this value of the parameter 

produces too much dissipation in the simulation of channel flow. Moin 

and Kim found a constant of 0.065 was needed to maintain the turbulence 

in this flow, in conjunction with other model changes. 

The causes of the variation of the Smagorinsky parameter are not 

well understood. Deardorff (1971) stated that changing the numerical 

techniques requires a different value of the constant. Mansour et ale 

(1978) showed that use of a second-order central-difference method for 

evaluating the model requires a constant of the order 10% greater than 

use of a pseudospectral method. McMillan and Ferziger (1979) found 

evidence that the effect of mean shear is to decrease the net rate of 

energy transfer to small scales. 
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We shall show in Chapter VII that one of the effects of rotation is 

to decrease the net rate of energy transfer to the small scales. These 

results could explain some of the discrepancy. 

e. Length scale for anisotropic filters 

Since wall-bounded flows are inhomogeneous and require a nonuniform 

numerical grid, the definition of the characteristic length scale used 

in the model is no longer simple. Moin and Kim (1981) used the follow­

ing definition for the mean filter width: 

= (4-13) 

while Bardina et ale (1980) showed that a better definition of the mean 

filter width in homogeneous turbulent flows with anisotropic filters is 

= (4-14) 

Eddy viscosity models require a different model constant in order 

to keep the proper balance of energy, 1£ the mean filter width is ob­

tained from Eq. (4-14) instead of Eq. (4-13). Therefore, the definition 

of the mean filter width in inhomogeneous turbulent flows is very signi­

ficant when comparisons of model constant are performed. 

4.3.2 Defiltering 

LES predicts filtered turbulent quantities; however, for comparison 

with experiments we need the full turbulent quantities. We define de­

filtering as any method of obtaining full turbulent quantities from fil-

tered ones. 

Two defiltering methods have been proposed: 

• Eddy viscosity method 

Lilly (1967) and Moin et ale (197H) assumed that the velocity 

scale used in the eddy viscosity is the velocity scale of the SGS 

turbulence, cf. Eq. (4-2). The SGS TKE can therefore be obtained from 

Eq. (4.2): 
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.L 
2 

c .. 0.094 (4-15) 

However, we have seen in the previous section that the velocity scale of 

the eddy viscosity is not the velocity scale of the SGS turbulence. 

Figure 4.6 shows that Eq. (4-15) underpredicts the SGS TKE by 37% at the 

initial station. 

• Energy spectrum method 

Cain (1981) proposed to calculate the full TKE by integrating the 

(defiltered) three-dimensional energy spectrum. The (defiltered) energy 

spectrum is obtained by applying the inverse of the filter to the re­

solvable or filtered three-dimensional energy spectrum up to the maximum 

resolvable wave number. At high wave numbers Pao's (1965) spectrum is 

used and is ma::ched to the computed spectrum at the maximum resolvable 

wave number. 

The main problem of· this method is that it introduces large errors 

because the filtered energy spectrum is very uncertain near the maximum 

wavenumber, and the inverse of the filtering function is relatively 

large at those wavenumbers. The result is also sensitive to the numeri­

cal method used. For example, Mansour et .al. (1977) showed that chang­

ing the numerical method could produce differences as large as 400% in 

the filtered energy spectrum at the maximum resolvable wave number. 

In the next chapter, an accurate "defiltering" method will be pro­

posed. This method is based on the physical assumptions of large-eddy 

simultion and will be tested against experimental data. 
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Chapter V 

BASIC RELATIONSHIPS AND DEFILTERING METHOD IN LARGE-EDDY SIMULATION 

The analysis presented in this chapter sheds some light on the 

unresolved issues described in the preceding chapter. It primarily 

analyzes the behavior of the characteristic turbulence scales in the 

decay of homogeneous isotropic turbulence at high Reynolds numbers, and 

leads to a new defiltering method. This method is tested against exper­

imental results on isotropic, rotating, and sheared turbulence. 

5.1 Energy Balance and the Defiltering Method 

The prime requirement placed on turbulence models is to provide the 

proper energy balance. We therefore begin by analyzing the energy bal­

ance in turbulent flows. 

Figure 5.1 is a schematic representation of the three-dimensional 

energy spectra and energy balances of the full, filtered, and SGS flow 

fields in the decay of homogeneous isotropic turbulence. The energy 

spectrum of the filtered field is obtained by filtering the full energy 

spectrum, while the SGS energy spectrum is obtained by subtracting the 

filtered energy spectrum from the full energy spectrum. The energy 

balances may be written 

Full Field: aQ2/2 ... - E (5-1) at 

Filtered Field: 
aQ~/2 

(5-2) 
at =- - Ef 

SGS Field: a(,l /2 
= - (E - E ) (5-3) 

at f 

where 0.5 Q2, 0.5 QI, and 0.5 q2 are the turbulent kinetic energy 

per unit mass of the full, filtered, and SGS flow fields, respectively; 

E is the rate of turbulence energy diSSipation per unit mass; and ~f 

is the rate of turbulence energy transfer per unit mass from the fil­

tered flow field to the SGS flow field. 
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Since viscous dissipation of the large scale or filtered flow field 

is negligible at high turbulence Reynolds numbers, we may neglect it. 

Dimensional analysis and heuristic physical arguments for the full 

and filtered fields at high Reynolds numbers lead to the following rela­

tionships: 

Full Field: E "" 
Q3 

(5-4) L 
Q3 

Filtered Field: f (5-5) Ef Lf 

Tennekes and Lumley (1978) consider that this .. ••• is one of the 

cornerstone assumptions of turbulence theory; it claims that large 

eddies lose a significant fraction of their kinetic energy liz Q2 within 

one "turnover" time L/Q." 

The relationship (5-4) has been used frequently to get an estimate 

of the average length-scale of the energy-containing large eddies, L, 

and is about 4.5 times the longitudinal integral length scale, according 

to the experimental results of Comte-Bellot and Corrsin (1971), when a 

constant of unity is assumed in (5-4). Furthermore, Tennekes and Lumley 

(1978, p. 267) show that this length scale makes the normalized large 

scale spectrum of the turbulence energy independent of Reynolds number. 

Since the filtered flow field contains the same large eddies as the 

full flow field, we expect that 

Lf "" L (5-6) 

Therefore, combining relationships (5-4), (5-5), and (5-6), we have: 

E 
Q3 

(5-7) Ef 3" 
Qf 

This tells us that the dissipation rate, E, is larger than the rate of 

energy transfer from the resolved scales to the smaller scales, Ef, 

since filtering ensures that Q2 > Q1. The difference between these two 

quantities, i.e., E - Ef, represents the net rate of decay of SGS tur­

bulence and may be quite large. One cannot apply the "production equals 

dis,sipation" argument to the small scales if this is the case. 
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The SGS field is defined as the difference between the full field 

and the filtered field. The principal quantities for the subgrid scales 

are the turbulence kinetic energy per unit mass q2/2, dissipation rate 

per unit mass e:, and the filter width !::.t, which is their natural 

length scale. Dimensional analysis suggests that, if the Reynolds num­

ber is high enough that there is no significant viscous dissipation of 

eddies of size ~, then these scales are related by 

e: (5-8) 

Combination of relationships (5-7) and (5-8) gives the SGS turbu­

lent kinetic energy as a function of the full turbulence kinetic energy 

and filtered quantities, i.e., 

2 
q 

which may also be written as 

2 
q 

(5-9) 

(5-10) 

where cf is the constant of proportionality. This constant depends on 

the filter function and energy spectrum of the turbulence. The Gaussian 

filter and energy spectra of Comte-Bellot and Corrsin (1971) suggest cf 

... 1.04. 

Since the full turbulence kinetic energy is equal to the sum of the 

filtered and SGS energies, i.e., 

(5-11) 

the combination of Eqs. (5-10) and (5-11) gives the proposed defiltering 

equation for the full turbulence kinetic energy as: 

2 Q .. (5-12) 

which is a function only of filtered quantities. This procedure will be 

tested in the following subsections against experimental data on homo­

geneous isotropic, rotating, and shear turbulence. 
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5.2 Tests of the Scaling Relationships 

In this section we shall test the scaling relationships presented 

in the preceding section against the experimental results of Comte­

Bellot and Corrsin (1971) on the decay of homogeneous, isotropic turbu­

lence. The turbulence Reynolds number based on the Taylor microscale 

was RA ~ 73 in this experiment. The simulations are LES with the Smag­

orinsky model, and the model constant is Cs = 0.21, and a 32 x 32 x 

32 computational grid is used. The numerical method is pseudospectral, 

except for the turbulence model, which is evaluated with second-order 

central differences. The filter width, flt. = 0.03 m, is twice the 

computational mesh size, and the initial energy spectrum is shown in 

Fig. 4.2. The filtered quantities are obtained from the simulation, 

while the full quantities are obtained from the experiment. 

Firstly, the assumption that the average length-scales of the fil­

tered flow field, Lf :: Q~/€f' and full flow field, L :: Q3/€, are 

equal is tested. Figure 5.2 gives the time history of the ratio of 

these length scales, L/Lf' and indicates that they are nearly equal. 

In this simulation over half of the energy is in the SGS turbulence. We 

conclude that the assumption of equality of large length scales 1n the 

full and filtered fields is accurate for this flow. 

Secondly, the scaling relationship for the small scales is tested. 

Figure 5.3 gives the time history of q2/{26
f

€)2/3, which Eq. (5-5) 

suggests should be constant, and indicates that this 1s also a good 

approximation in the decay of turbulence at high Reynolds numbers. 

5.3 Tests of the Defiltering Method 

In this section the full turbulence kinetic energy is calculated by 

using Eq. (5-12) and comparing it to experimental results on isotropic, 

rotating, and sheared turbulence. The filtered turbulence quantities 

are obtained by LES, as described above, and the constant of Eq. (5-12) 

is kept at cf = 1.04. 
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5.3.1 Homogeneous Isotropic Turbulence 

LES of the decay of homogeneous isotropic turbulence of Comte­

Bellot and Corrsin (1971) has been presented above and in Chapter IV. 

In particular, Fig. 4.1 shows the prediction of the time history of the 

resolvable energy, and Fig. 4.3 shows the prediction of the resolvable 

three-dimensional energy spectrum. We shall use this simulation to test 

the defiltering relationship (5-12). 

Figure 5.4 shows the time history of the full and filtered turbu­

lence energies obtained from the experiment and the simulation. The 

prediction of the decay of the full turbulence energy obtained from Eq. 

(5-12) is within 5% of the experimental data. 

5.3.2 Homogeneous Rotating Flows 

The defiltering method shall be used to predict the experimental 

data of Wigeland and Nagib (1978) on the decay of homogeneous turbulence 

in the presence of constant rate of rotation. As we have observed in 

Chapter II, extension of the isotropic turbulence code to include frame 

rotation is straightforward. 

Figure 5.5 compares the experimental and simulated turbulence ener­

gies of the full and filtered flow fields. The only modification is the 

inclusion of the Coriolis force in the momentum equations and the cen­

trifugal potential in the mean reduced pressure. 

The initial three-dimensional energy spectrum is the one used to 

simulate isotropic turbulence but is scaled to match the initial tur­

bulence kinetic energy and dissipation rate of the flow being Simulated, 

as explained in Section 2.10. 

Figure 5.5 gives the comparison between the predicted and the ex­

perimental time history of the inverse of the full turbulence energy 

with rotation rates of 0, 20, and 80 sec-I, respectively (see Table 

7.3). The turbulence Reynolds number based on Taylor microscale is 

about 15. The inverse of the turbulence energy has been plotted in 

order to emphasize the differences at later times due to the long decay 

time of these experimental results. The effects of rotation on the rate 

of decay of the turbulence will be analyzed in detail in Chapter VII. 
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The predictions compare very well with the experimental observations. 

The small differences observed at the high rotation rate of 80 sec-1 

can be attributed to several reasons, such as experimental uncertainties 

which are larger at higher rates of rotation, initial conditions of the 

simulation, and non-inclusion of the Rossby number in the scaling rela­

tionships. 

5.3.3 Homogeneous Shear Flows 

We shall apply the defiltering method to simulations aimed at the 

experimental results by Champagne, Harris, and Corrsin (1970) for 

homogeneous turbulent shear flow. In this experiment, the shear rate 

was S "" 12.9 sec -1, the turbulence Reynolds number based on Taylor 

micro scale was about 130, and St = 3.2. 

The extension of the method necessary to simulate homogeneous shear 

flows is given in Chapter II. The initial conditions are the ones used 

to simulate isotropic turbulence, scaled to match the initial turbulence 

kinetic energy and dissipation rate, as explained in Section 2.10. 

Figure 5.6 shows the time history of the resolvable turbulent 

energy obtained from LES, together with the comparison between the pre­

dicted and the experimental full turbulent energies. The agreement is 

very good. 

The experimental results by Harris, Graham, and Corrsin (1977) for 

homogeneous turbulent shear flow are not used, due to computer limita­

tions. In this experiment, the shear rate was S = 44 sec-1 the tur­

bulence Reynolds number based on Taylor microscale was about 230, and 

St ~ 12.7. LES with a 32 x 32 x 32 grid was not valid after St = 4, 

due to the growth of the length scales. A meaningful simulation of this 

flow requires at least a 128 x 128 x 128 grid and several hours of com­

putational time, and the resources were not available to this work. 
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5.4 Analysis of the Scaling Relationships 

The results presented above show that the scaling relationships and 

the defiltering method are accurate for several homogeneous turbulent 

flows. We emphasize that it was not assumed that the net rate of trans­

fer of energy from the resolvable turbulent scales to the subgrid scales 

is equal to the disSipation rate. Rather, the key assumption is that 

the average large length scales of the full and filtered field are 

equal. These length scales are proportional to the integral length 

scales in isotropic turbulence; however, there is no known relationship 

between them when there is anisotropy in the length scales. Since mea­

surements of integral length-scales have relatively large experimental 

uncertainties (see Champagne, Harris, and Corrsin, 1970, p. 105), and 

there is no agreement on the proper definition of the integral length 

scales when the two-point velocity correlation function contains posi­

tive and negative values, it seems reasonable to use Q3 /e as the 

proper length scale. 

41 



42 



Chapter VI 

NEW SUBGRID-SCALE TURBULENCE MODELS FOR LARGE-EDDY SIMULATION 

The physical bases of large eddy simulation (LES) and some unre­

solved issues on subgrid-scale (SGS) turbulence modeling were analyzed 

in Chapter IV. Basic relationships for the characteristic turbulence 

scales in LES were developed in Chapter V. In this chapter, improved 

SGS turbulence models for LES are developed, analyzed, and tested. 

These models not only keep the proper mean energy balance, but represent 

SGS Reynolds stresses much better. These models are tested by using 

full and large eddy simulations of homogeneous, isotropic, rotating, and 

sheared turbulent flows. 

6.1 Subgrid-Scale Reynolds Stresses 

A good SGS turbulence model should accurately represent all the 

effects of the SGS ~eynolds stresses on the filtered flow field. Exper­

imental and numerical evidence indicates that the most significant ef­

fect of the SGS Reynolds stresses is to transfer energy from the large 

eddies to the SGS eddies. 

We can study these effects in the decay of homogeneous isotropic 

turbulence. In this case, the mean energy balance of the full flow 

field is Eq. (5-1) and the mean energy balance of the filtered flow 

field is Eq. (5-2). At high turbulence Reynolds numbers, the rate of 

decay of the filtered turbulent kinetic energy is well approximated by: 

(6-1) 

It is evident from Kq. (6-1) that the part of the local SGS Reynolds 

stress tensor which contributes to the transfer of energy is diagonal in 

a coordinate system aligned with the principal axis of the local fil­

tered strain rate tensor, ~ij. Eddy viscosity models account for this 

effect by assuming that the entire SGS Reynolds stress deviator is pro­

portional to Sij 

= - 2v S 
't ij 

(6-2) 
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The proportionality factor is the eddy viscosity "'t. This kind of 

model provides the proper energy balance of the filtered flow field in 

the mean but not in detail. The success of eddy viscosity models has 

been demonstrated in a number of simulations (see Kwak et al., 1975, 

Shaanan et al., 1975, Mansour et al., 1978, Kim et al., 1979, and Moin 

et al., 1978, 1981). All these simulations used Smagorinsky's (1963) 

model (see Eq. (4-6» or the vorticity model (see Eq. (4-7» for the 

eddy viscosity. We have already shown in Chapter IV that some of the 

basic assumptions used to derive these models are wrong. Therefore, it 

is useful to provide a derivation of the Smagorinsky model that is not 

based on these assumptions. This derivation provides insight into the 

limitations and capabilities of the Smagorinsky model and guidance as to 

how to devise improved SGS models. 

6.2 Smagorinsky Model 

The energy-dissipation rate of the full turbulent kinetic energy is 

given by definition of ~: 

e: ... 

where v is the kinematic viscosity and ~ 

scale. By analogy, we shall assume that the net 

out of the filtered flow field (large eddies) is 

<" >3 't 
e:f 64 

f 

(6-3) 

the Kolmogorov length 

rate of energy transfer 

given by: 

(6-4) 

where 6f is the filter width which is also the length scale of the 

smallest eddies of the filtered flow field. Combining Eqs. (6-1), 

(6-2), and (6-4), we have: 

<" >3 
4 e:f ... < 2"'tSij Sij > (6-5) 

6
f 

The Smagorinsky model for the eddy Viscosity is obtained if rela­

tionship (6-5) is applied locally, i.e., 

(6-6) 



where Cs is the constant of proportionality. Tests of this model 

based on full simulations show that neglecting the spatial variations of 

the eddy viscosity does not make DIlch difference (see McMillan et al., 

1978, and Section 6.6 below). The Smagorinsky model (Eq. (6-6» is able 

to maintain the proper energy balance of the mean filtered flow field, 

because its spatial average is consistent with relationship (6.5). 

6.3 The Transfer Flow Field 

A basic assumption of the previous section is that the net rate of 

energy transfer from the filtered flow field to the SGS flow field is 

determined by eddies whose size is the filter width. These eddies are 

Simultaneously the smallest eddies of the filtered flow field and the 

largest eddies of the SGS flow field. 

The definition of large and small eddies in LES is based on filter­

ing. By analogy to the method used to decompose the full flow field, we 

may decompose the filtered and SGS flow fields. This decomposition pro­

vides a three-level flow field decomposition, as shown in Diagram 6.2. 

Full Flow Field, ui 

I (Q2 "" < uiui » \ 
Filtered Flow Field, u\ SGS , I 

Larger Flow Field Transfer Flow Field 

Flow Field, u1 '" ui - ui 

t 
Smaller Flow Fiel~ 

u
i 

-, '" u - u u
i i i u" = u' - \i""" iii 

Diagram 6.2. Three-level flow field decomposition using a smooth filter 
function 

The larger flow field ui contains the larger eddies of the fil-

tered flow field. The smaller eddies of the filtered flow field are 

obtained by subtraction: 

li' u - u (6-7) 
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which is analogous to: 

u' u-u (6-8) 

The larger eddies of the SGS flow field are obtained by filtering 

Eq. (6-8). 

li' = u - u (6-9) 

However, Eqs. (6-7) and (6-9) are identical, so that the smaller eddies 

of the filtered flow field are also the larger eddies of the SGS flow 

field and will be called the transfer flow field, as indicated in Dia­

gram 6.2. The identity of these two fields holds 1£ the filter function 

is smooth; the Gaussian filter is in this category. 

We assume that most of the energy transfer between the filtered 

flow field and the SGS flow field takes place through the transfer flow 

field. We shall use this idea to formulate new SGS turbulence models. 

It is consistent with the concept of energy-cascade, cf. Tennekes and 

Lumley (1972) and Leonard (1974). Finally, if a filter which is a step­

function in Fourier space is used, the smaller eddies of the resolvable 

flow field can be defined by increasing the filter width or decreasing 

the cut-off frequency of the step-function; however, we do not recommend 

sharp filters for reasons given in Section 2.5. 

6.4 Improved Eddy-Viscosity Models 

Here we shall use the ideas of the previous section to formulate 

improved eddy-viscosity SGS models. We expect that the smaller and 

larger components of the SGS should affect the large-scale motions 

differently. Therefore, we propose the following "two-component" model 

of the eddy viscosity: 

(6-10) 

2 and q2 are the where c q and cm are model constants and qf m 

turbulence intensities associated with the transfer and smaller flow 

fields, respectively. 
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The large eddies are expected to interact more strongly with the 

large SGS eddies than with the smaller SGS eddies, so we expect Cq > 
cm• Moreover, if the average length scale of the large eddies is much 

larger than the filter width, i.e., if L» 6f, the effects of the 

smaller SGS eddies should be negligible, and Eq. (6-10) reduces to a 

turbulent kinetic energy (TKE) model. 

V a 
't 

If this model is applied locally, qf should be defined as 

= 

(6-11) 

(6-12) 

The Smagorinsky model can also be derived. Following the arguments 

used above, the net rate of energy transfer from the filtered flow field 

to the SGS flow field should be: 

(6-13) 

which in combinat on with Eqs. (6-1), (6-2), and (6-11) leads to the 

Smagorinsky model. 

A combination of the TKE and Smagorinsky models provides the fol­

lowing model: 

(6-14) 

which does not contain the filter width ~ explicitly. This model may 

be useful for inhomogeneous turbulent flows. 

Tests of these eddy viscosity models based on full simulations, 

LES, and experimental observations will be presented at the end of this 

chapter. These tests show no significant differences among any of the 

eddy viscosity models presented in this section, but they do confirm the 

contention that the velocity scale of the eddy viscosity is that of the 

larger SGS or smaller resolvable eddies. 
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6.5 Scale-Similarity Model 

The arguments made above suggest that we model the SGS Reynolds 

stresses directly in terms of the transfer flow field. Since the SGS 

velocity field is: 

(6-15) 

we might expect 

(6-16) 

which is the transfer velocity field. This suggests that 

(6-17) 

However, this ignores the "cross terms" of Eq. (2-37). Modeling of each 

term of the SGS Reynolds stress tensor Rij in terms of the transfer 

ur and larger u
i 

velocity filds suggests that 

'ii"'"ijT '" UTU'" ... lui - ui ) (Uj - u ) 
i j i j j 

,-
uiuj '" 

::-r -u
i 

uj 
D lui - ui ) Uj 

- , 
'" 

- ::-r ... ui (Uj - U ) uiu j 
u

i 
u

j j 

and 

(6/18) 

might be a better model. 

We call Eq. (6-18) a scale-similarity model. It is not an eddy 

viscosity model and does not ensure a positive net rate of energy trans-

fer to the small scales. Tests of this model presented in the next 

section show that it correlates well with the SGS Reynolds stresses 

locally, but does not dissipate energy. Simulations of decay of homo­

geneous isotropic turbulence with the scale similarity model and with­

out the eddy viscosity model do not lost energy. To obtain the best 
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features of both models, we consider the following linear combination 

model: 

= (6-19) 

where 

(6-20) 

This model will also be tested in the following sections. 

6.6 Tests of Subgrid-Scale Turbulence Models 

Clark et ale (1977) proposed the evaluation of SGS turbulence mod-

els by using fully simulated turbulent flows. These simulations of 

three-dimensional and unsteady homogeneous turbulent flows are limited 

to low Reynolds numbers, RA, < 40 for a 64 x 64 x 64 grid and RA, < 
63 for a 128 x 128 x 128 grid. McMillan and Ferziger (1979) used 

this technique to analyze various aspects of eddy viscosity models. 

Their results indicate that eddy viscosity models correlate poorly with 

"exact" SGS Reynolds stresses. 

We have used this technique to test eddy viscosity and scale­

similarity models. This work was done in conj unction with Dr. O. J. 

McMillan at Nielsen Engineering and Research, Inc., and Dr. R. S. 

Rogallo at NASA-Ames Research Center. 

Rogallo (1977, 1981) has fully simulated homogeneous turbulent 

flows using 64 x 64 x 64 and 128 x 128 x 128 grid points on the 

ILL lAC IV computer. The velocity field (u) was stored on a magnetic 

tape and processed on a CDC-7600 computer. A filtered velocity field is 

computed on a 16 x 16 x 16 grid. The difference between the "exact" 

and filtered velocity field gives the SGS velocity field. Once these 

velocity fields are known, the "exact" SGS Reynolds stresses are calcu­

lated. The model of the SGS Reynolds stresses can also be calculated 

using only the filtered velocity field (U). The models and exact 

results are then compared. 

Comparisons can 

Mij ), vector level 

lui (a 'tij /aXj ) and 

be made at the tensor level (comparing 'tij and 

(a'ti.!axj and aMi. /ax
j

) and/or the scalar level 
_ J J 
ui (aMi/axj ) ). 
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A computer program was developed to make least-squares comparisons 

between the "exact" and the SGS Reynolds stresses models. The equations 

for the least-squares correlation coefficients, partial correlation co­

efficients, constant coefficients, standard deviations, t-statistics, 

and various other statistics are given in Johnston (1972); they are also 

described in many other statistics texts. Appendix A gives the equa­

tions of the correlation coefficients and model constants for the mul­

tiple component models analyzed in this chapter. 

Exact tests were performed for the models using one field of homo­

geneous isotropic turbulence at. RA = 38 and RSGS = 180, and one field 

of homogeneous turbulence in the presence of mean shear S = 34 sec-1 

at RSGS == 204, where RSGS = S1I11 v is the SGS Reynolds number. The 

same fields were used my McMillan et ale (1980) and Bardina et a!. 

(1980) in tests of SGS models. 

6.6.1 Eddy Viscosity Models 

The eddy viscosity models all have the form: 

== - 2v S 
1: ij 

(6-21) 

The models tested are: 

Smagorinsky model: 
2 

(2S. ,Si' )1/2 • v = (csllf ) 
1: 1.J J 

(6-22) 

Vorticity model: 2 (W - )1/2 • v = (cvllf ) Wi wi 1: 
(6-23) 

• TKE model: v == cq qfllf 1: 
(6-24) 

where q = f 
1_ - = = 11/2 ui ui - u

i 
u

i 
• (6-25) 

• Smagorinsky-TKE model: (6-26) 

• (6-27) 
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• Constant eddy viscosity: 

" = 't 

spatial average value of any of 
the above eddy viscosity models. 

(6.28) 

The average correlation coefficients between the "exact" and the 

eddy viscosity model of the SGS Reynolds stresses are shown in Table 6.1 

and Table 6.2 for homogeneous isotropic turbulence and homogeneous 

sheared turbulence, respectively. All cases are calculated with a 

Gaussian filter and a filter width ~,.. 211, where 11 is the computa-

tional grid spacing. 

Ferziger (1979). 

These are values recommended by McMillan and 

Table 6.1 

Average Correlation Coefficient between "Exact" and 
Eddy Viscosity Model SGS Reynolds Stresses in Homogeneous 

Isotropic Turbulence at RA = 38 and RSGS = 180 

Eddy Viscosity Model Tensor Vector Scalar 
Level Level Level 

Smagorinsky, Eq. (6-22) .24 .20 .36 

Vorticity, Eq. (6-23) .24 .22 .38 

TKE, Eq. (6-24) .24 .18 .36 

Smagorinsky-TKE, Eq. (6-26) .22 .14 .36 

Hybrid, Eq. (6-27) .24 .19 .37 

Constant, Eq. (6-28) .25 .22 .39 

Table 6.2 

Average Correlation Coefficient between Exact and Eddy-Viscosity 
Model SGS Reynolds Stresses in Homogeneous Turbulence in the 

Presence of Mean Shear, S = 34 sec-1 at RsGS = 204 

Eddy Viscosity Model Tensor Vector Scalar 
Level Level Level 

Smagorinsky, Eq. (6-22) .05 .04 .05 

Vorticity, Eq. (6-23) .03 .04 .06 

TKE, Eq. (6-24) .03 .04 .04 

Smagorinsky-TKE, Eq. (6-25) .03 .06 .02 

Hybrid, Eq. (6-27) .03 .06 .04 

Constant, Eq. (6-28) .04 .04 .05 
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Tables 6.1 and 6.2 show that all these eddy viscosity models give 

similar correlation coefficients; all are quite low. Moreover, the 

correlation coefficients between the various models are more than 0.8 at 

the tensor and vector levels and more than 0.9 at the scalar level. 

Therefore, these models are essentially equivalent. These results are 

consistent with those of Clark et ale (1977) and McMillan et ale (1978). 

They indicate that no eddy viscosity model is better than any other, but 

some may have numerical advantages. All eddy viscosity models give poor 

levels of correlation for homogeneous isotropic turbulence, and almost 

zero level of correlation for homogeneous sheared turbulence. 

The weakness of the eddy viscosity models is also shown in Figs. 

6.1 and 6.2. These figures show the "exact" and the Smagorinsky model 

values of the SGS Reynolds stresses at the tensor, vector, and scalar 

levels for homogeneous isotropic and sheared turbulence. For an exact 

model, the plotted symbols would lie on a line bisecting the axes. We 

see that eddy viscosity models are not able to represent the local val­

ues of the SGS Reynolds stresses, but they can fit the mean energy loss 

of the resolvable scales. 

6.6.2 Scale-Similarity Model 

The scale-similarity model 

'tij = (6-29) 

where 

(6-30) 

has been subjected to the test procedures described in the previous sec­

tion. 

Tables 6.3 and 6.4 show the average correlation coefficient between 

the "exact" and model values of the SGS Reynolds stresses for homogene­

ous isotropic and sheared turbulence, respectively. The values for the 

Smagorinsky and linear combination models are also shown for comparison. 
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Table 6.3 

Average Correlation Coefficient between Exact and Model Values 
of the SGS Reynolds Stresses in Homogeneous Isotropic Turbulence 

at R", = 38 and RSGS = 180 

Model Tensor Vector Scalar 
Level Level Level 

Smagorinsky model .24 .20 .36 

Scale-similarity model .80 .71 .50 

Smagorinsky and scale-
similarity model .83 .74 .60 

Table 6.4 

Average Correlation Coefficient between "Exact" and Model Values 
of the SGS Reynolds Stresses in Homogene~us Turbulence in the 

Presence of Mean Shear, S = 34 sec- at RSGS = 204 

Model Tensor Vector Scalar 
Level Level Level 

Smagorinsky model .05 .04 .05 

Scale-similarity model .80 .75 .58 

Smagorinsky and scale-
similarity model .80 .75 .58 

The values of the model cons tants are presented in the next sub­

section, 6.6.3. The correlation coefficients for the Smagorinsky and 

scale-similarity models are independent of the model constants. For the 

combined model, the Smagorinsky and scale-similarity model, the influ­

ence of the model constants in the values of the correlation coeffici­

ents are insignificant, due to the poor correlation between the Smagor­

insky model and the "exact" values. 

Table 6.3 shows very high correlation coefficients between the 

exact and scale similarity values in homogeneous isotropic turbulence; 

they are much higher than those for eddy viscosity models. 

Table 6.4 is even more impressive. The correlation coefficients 

for homogeneous sheared turbulence are as high as those for homogeneous 

isotropic turbulence, while, as noted above, the eddy viscosity models 

show almost zero correlation coefficients in the shear flow. 
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Figures 6.3 and 6.4 show the exact and the scale-similarity values 

of the SGS Reynolds stresses at the tensor, vector, and scalar levels 

for homogeneous isotropic and sheared turbulence, respectively. The 

distributions are what one expects of a good model at the tensor level 

bu't are poorer at the scalar level. 

LES of homogeneous turbulent flows using the scale-similarity model 

shows that this model is not dissipative. This can also be inferred 

from the exact results. The scale-similarity model constants obtained 

from the least-squares statistics at the scalar level are 0.9 and 1.2 

for homogeneous isotropic and sheared turbulence, respectively. How-

'ever, the constants of this model obtained from the ratio between the 

mean exact and model values at the scalar level are 22 and 25 for homo­

geneous isotropic and sheared- turbulence, respectively. 

Since eddy viscosity models provide the proper mean energy balance 

and the scale-similarity model gives a good representation of the local 

SGS Reynolds stress but does not provide the mean energy balance, the 

linear combination of the two may be a desirable SGS model. The corre­

lation coefficient between the scale-similarity and eddy viscosity 

models is almost zero at all levels for both flows, so adding them 

should yield the best features of each. Thus correlation coefficients 

shown for the combined model in Tables 6.3 and 6.4 are equal to or 

higher than those obtained from the simple scale-similarity model. 

Figures 6.5 and 6.6 show the exact and linear combination model values 

of the SGS Reynolds stresses, and the good behavior is obvious. 

In conclusion, tests based on full simulations of homogeneous iso­

tropic and sheared turbulent flows indicate that the linear combination 

of the scale-similarity and eddy viscosity models gives a good represen­

tation of the SGS Reynolds stresses and has the desired dissipative 

property. 
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6.6.3 Model Constants 

The full simulations used in the previous sections are also able to 

provide estimates of the values of the model constants. 

First consider the constant (cs ) of the Smagorinsky model (Eq. 

(6-21). A good estimate of this constant is the one which makes the 

ratio of the spatially averaged exact and model scalar values equal to 

unity, because the main objective of eddy-viscosity models is to provide 

proper dissipation. The values of Cs obtained in this way are 0.20 

and 0.09 for homogeneous isotropic and sheared turbulence, resp.ectively. 

The values of Cs obtained from least squares analysis at the scalar 

level are 0.17 and 0.06 for the two flows. In the shear flow, the mean 

velocity gradient did not contribute to the model. These results pro­

vide evidence that the Smagorinsky constant decreases in the presence of 

mean shear. MCMillan et ale (1980) found that the Smagorinsky constant 

does not change in the presence of irrotational mean strain. Thus, it 

seems that the rotational effects of the shear are responsible for the 

decrease in the Smagorinsky constant. This is also consistent with the 

results of the next chapter. 

The values of Cs also agree reasonably well with the values of 

Cs = 0.21 found by Mansour et ale (1978) by LES of the homogeneous iso­

tropic turbulence and Cs = 0.065 found by Moin et ale (1981) by LHS of 

turbulent channel flow. 

Further studies of the influence of mean shear on the Smagorinsky 

constant are required. Such a study is currently being made by 

MCMillan. 

For the linear combination model (6-19), the constants were found 

to be Cs = .19 and cr = 1.1, when second-order central difference is 

used for the model terms. These were obtained by a combination of least 

squares fitting and small adjustments to make LHS fit experimental data. 

The reduced value of Cs (.19) as compared to the value for the pure 

Smagorinsky model is due to the slight disSipation produced by the scale 

similarity component of the model. The model constants were found to 

be Cs = 0.165 and cr = 1.1 when the pseudo-spectral method is used 

for the model terms. 

55 



For completeness, the linear combination model of the SGS Reynolds 

stresses is rewritten: 

'rij 

and 

=- (6-31) 

where 

(6-32) 

and 

= (6-33) 

6.6.4 Other SGS Reynolds Stress Models 

Several other SGS Reynolds stress models were tested by using the 

method described in the previous sections. }lost showed no improvement 

with respect to the linear combination of the scale-similarity and eddy­

viscosity models; some of these models are given in Appendix B. 

In this section, we shall comment on only two further turbulence 

models. The first is Eq. (6-17). This model is highly correlated with 

the scale-similarity model, Eq. (6-18), and gives correlation coeffi­

cients almost as high as the latter one. The least-squares model con­

stant is 1.2. It could be considered an alternative to the scale simi­

larity model. 

The second model considered is: 

(6-34) 

where 

(6-35) 
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This is similar to the turbulence model of Wilcox and Rubesin (1980). 

Significant improvements were found when it was added to the Smagorinsky 

and scale-similarity models. 

Tables 6.5 and 6.6 show the correlation coefficients between exact 

and model quantities in homogeneous isotropic and sheared turbulence, 

respectively. The improvements in the level of the correlation coeffi­

cients when Eq. (6-34) is added to the Smagorinsky and scale-similarity 

model are significant, and use of this "triple" model may be worthwhile. 

The least-squares model constant of this new term is 0.065. 

Table 6.5 

Average Correlation Coefficient between "Exact" and Model Values 
of the SGS Reynolds Stresses in Homogeneous Isotropic Turbulence 

at RX = 38 and RSGS = 180 

Model Tensor Vector Scalar 
Level Level Level 

Eq. (6-31) .31 .13 .43 

Smagorinsky and scale-
similarity.83 .74 .50 

Smagorinsky, scale-similarity, 
and Eq. (6-31) .88 .78 .70 

Table 6.6 

Average Correlation Coefficient between "Exact" and Model Values 
of the SGS Reynolds Stresses in Homoge~~ous Turbulence in the 

Presence of Mean Shear, S = 34 sec at RSGS a 204. 

Model Tensor Vector Scalar 
Level Level Level 

Eq. (6-31) .27 .10 .53 

Smagorinsky and scale-
similarity.80 .75 .58 

Smagorinsky, scale-similarity, 
and Eq. (6-31) .85 .78 .68 
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Clark et ala (1977) found almost no correlation between Eq. (6-34) 

and exact values in homogeneous isotropic turbulence. However, Clark's 

correlations were made without subtracting the spatial averages and are 

therefore unreliable. 

6.6.5 Further Tests of the Scale-Similarity Model 

McMillan et ala (1980) performed tests of the scale-similarity 

model in homogeneous turbulent flows in the presence of mean strain and 

shear. Their results indicate that the correlation coefficients in 

homogeneous strained flow are nearly as large as those obtained in homo­

geneous shear flows, cf. Table 6.4. The correlation coefficients are 

reduced to 0.13-0.29 when a sharp cut-off filter in Fourier space is 

used instead of a smooth filter. However, more tests are required, 

because the filter kept only the lowest three wavenumbers in each direc­

tion. 

6.7 Tests of Subgrid-Scale Turbulence Models Using Large-Eddy 

Simulations 

In this section, scale-similarity and eddy viscosity models are 

tested by performing large eddy simulations of homogeneous turbulence. 

These simulations used the methods described in Chapter II. The results 

are compared against the experimental results of Comte-Bellot and Corr­

sin (1971), Wigeland and Nagib (1978), and Champagne, Harris, and Corr­

sin (1970) in homogeneous isotropic, rotating, and shear turbulent 

flows, respectively. 

6.7.1 Homogeneous Isotropic Turbulence 

The experimental results of Comte-Bellot and Corrsin (1971) on the 

decay of homogeneous isotropic turbulence are simulated in the way de­

scribed in Section 4.3. The numerical results obtained with each turbu­

lence model are compared to the experimental data for the resolvable 

turbulent kinetic energy and three-dimensional energy spectra shown in 

Figs. 4.1, 4.2, and 4.3, respectively. 
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• Eddy Viscosity Models 

All of the eddy-viscosity models of Section 6.6.1 are able to simu­

late this flow well. Figure 6.7a shows the decay of the spatially aver­

aged eddy viscosity obtained from LES using the Smagorinsky, vorticity, 

and TKE models given by Eqs. (6-22), (6-23), and (6-24) with model 

constants Cs ~ U.21, Cv = 0.21, and cq = 0.16, respectively. The 

numerical method used to calculate the spatial derivatives is pseudo­

spectral, except for the model terms where second-order central differ­

ences are used. 

Figure 6.7b shows similar results, except that all partial deriva­

tives were computed by the pseudospectral method. The model constants 

had to be reduced 10% in order to fit the experimental data. 

Figure 6.8 compares the three-dimensional energy spectra using the 

Smagorinsky model with both numerical methods for the model terms. 

Neither result shows significant differences with the experimental 

spectrum. The pseudospectral method underpredicts the experimental 

'results at high wavenumbers, while the second-order central difference 

method predicts the experimental results accurately in this region. 

• Scale-Similarity and Eddy-Viscosity Models 

Large-eddy simulations (LES) of the decay of homogeneous isotropic 

turbulence using the combined scale-similarity (Eqs. (6-29) and (6-30» 

and Smagorinsky (Eqs. (6-22) models are considered in this section. 

Figure 6.9 shows the decay of the (filtered) turbulent intensity, 

using the Smagorinsky model with and without the scale-similarity model. 

The experimental values of Comte-Bellot and Corrsin (1971) at the ini­

tial and final stations are also shown. Figure 6.10 shows the experi­

mental and both numerical three-dimensional energy spectra at the final 

time. The results shown in Figs. 6.9 and 6.10 indicate that the com­

bined model performs as well as or better than the Smagorinsky model 

alone. This is not surprising. However, the numerical prediction of 

higher-order turbulence statistics does improve when the scale­

similarity model is included. One significant turbulence statistic in 

homogeneous isotropic turbulence is the velocity-derivative skewness: 
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which measures the degree of asymmetry of the velocity-derivative dis­

tribution and determines the rate of vorticity production by stretching 

of vortex lines (see Townsend, 1976, pp. 126-129). Batchelor (1953) 

measured the skewness in homogeneous isotropic turbulence and found an 

approximately constant value of -0.4. A number of other authors find 

similar values at the Reynolds numbers of interest here. 

Figure 6.11 shows the time history of the velocity-derivative skew­

ness. When the Smagorinsky model is used, the skewness starts at zero, 

decreases with time, and is nearing the value of -0.4 at the last time 

step. On the other hand, when the combined model is used, the skewness 

starts at zero, decreases to -0.4 in few time steps, and remains there 

through the simulation. This result clearly favors the combined model. 

6.7.2 Rotating Homogeneous Turbulent Flows 

The effects of rotation on turbulence will be analyzed in Chapter 

VII. In this section, we shall consider only the effects of the scale­

similarity model in the LES of rotating flows. 

In general, the results of simulations of homogeneous turbulent 

flows in the presence of rotation are similar to those of the previous 

section. Therefore, we shall consider only the decay of the turbulent 

kinetic energy and the time history of the velocity-derivative skewness. 

The analysis will be based on the cases shown in 1o'igs 5.4 and 5.5. 

Figure 5.5 shows good agreement between the LES results obtained by 

using the Smagorinsky model and the experimental results of Wigeland and 

Nagi b (1978). 

Figure 6.12 shows the time history of the (filtered) turbulence 

intensity obtained from LES using the Smagorinsky model with and without 

the scale-Similarity model. The numerical method is pseudospectral, 

except for the turbulence model terms for which second-order central 

differences are used. The results are nearly identical. 
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Figures 6.13a and 6.13b show the time history of the three 

velocity-derivative skewnesses. In contrast to the case of homogeneous 

isotropic turbulence, these skewness factors decrease to -0.2 in few 

time steps, and then remain constant or increase slowly. The absolute 

magnitudes of these skewness factors are smaller when the combined model 

is used. 

There are no experimental data of the skewness factor in homogene­

ous rotating turbulent flows. However, the smaller magnitudes of the 

skewness factors in the presence of rotation can be attributed to the 

inhibition of energy transfer from the large scales to the smaller 

scales of the turbulence. The smaller magnitudes obtained with the 

scale-similarity model seem more reliable. 

6.7.3 Sheared Homogeneous Turbulent Flows 

Now consider sheared homogeneous turbulence. Figures 6.14a and 

6.14b show the time history of the turbulence intensities of the exper­

imental results of Champagne, Harris, and Corrsin (1970), together with 

the filtered and "defiltered" turbulence intensities obtained from ~S 

using the Smagorinsky and combined models. The agreement between the 

experimental and numerical results is slightly better for the combined 

model. 

It is important to recall that LES starts with artificial initial 

conditions. Turbulence statistics similar to the experimental ones 

develop faster in the simulations with the combined model. 

6.8 Conclusions 

A scale-similarity subgrid-scale turbulence model has been devel­

oped in this chapter. This model represents the effects of the S17S 

turbulence on the large eddies much better than the traditional eddy­

viscosity models. It is consistent with the physical assumptions of 

LES. 

Exact tests based on full simulations of homogeneous flows show a 

high level of correlation between the exact SGS l{eynolds stresses and 

the scale-similarity model predictions. On the other hand, eddy­

viscosity models show little correlation in similar tests. 
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However, the scale-similarity model is nearly non-dissipative, so 

we sugges ted a linear combination of an eddy-viscosi ty model and the 

scale-similarity model. 

LES of homogeneous isotropic and rotating turbulent flows using the 

Smagorinsky and combined models show little differences in the level of 

the turbulence intensities. However, higher-order turbulence statistics 

develop faster and more accurately when the scale-similarity model is 

included. 

LES of homogeneous sheared turbulent flows with and without the 

scale-similarity model show some differences even at the level of the 

turbulence intensities. The agreement with the experimental observa-

tions is better when the scale-similarity model is included. We thus 

conclude that, for homogeneous flows, the combined model performs better 

than the Smagorinsky model, but the differences are not great. 
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Chapter VII 

HOMOGENEOUS TURBULENCE UNDERGOING ROTATION 

7.1 Introduction 

Rotation has profound effects in fluid mechanics. Shear flows are 

well known to be stabilized or destabilized by rotation. Some of the 

various effects of rotation are described in the book by Greenspan 

(1968) • 

The effects of rotation on isotropic turbulence are subtle and not 

well understood. Three experiments in this area differ in their conclu­

sions with respect to the effect of the rotation on the decay of the 

turbulence. 

The first experiment, by Traugott (1958), is similar in design to 

that of Wigeland and Nagib (1978) described below. For this reason and 

because only one case is presented, we shall not discuss this experiment 

in detail. The primary conclusion is that rotation decreases the rate 

of decay of the turbulence. 

Ibbetson and Tritton (1975) used a unique apparatus in which a grid 

was dropped through a rotating chamber to produce the turbulence. They 

found that the turbulence decayed more rapidly when the apparatus was 

rotating than when it was not. However, in this experiment, the chamber 

was small and the measurements were made a~ relatively long times. The 

walls of the chamber probably affected the decay of the turbulence, 

which should therefore not be regarded as homogeneous. This experiment 

cannot be used for our purposes, but it should be an interesting target 

for future work. 

The most recent experiment in this area was performed by Wigeland 

and Nagib (1978), hereafter referred to as WN. They used an open cir­

cuit wind tunnel of 0.15 m diameter, of the kind typically used in homo­

geneous isotropic turbulence experiments. A uniform flow was passed 

through a rotating honeycomb and a rotating grid in order to superimpose 

a solid-body rotation on the uniform flow and to generate the turbu­

lence. Afterwards, the flow was passed through a stationary test sec­

tion, where the decay of the rotating turbulence was then studied. 
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Unlike previous experiments, thermal insulation was provided by an 

inside foam lining, which minimized buoyancy effects. 

The primary purpose of the experimental work of WN was to resolve 

the apparently contradictory conclusions of the previous experiments of 

Traugot (1958) and Ibbetson and Tritton (1975), and to analyze the domi­

nant physical process which caused the effects of solid-body rotation. 

Thus, WN utilized a number of different flow conditions in which the 

flow speed, turbulence-generating grid, and rotation rate were changed. 

The range of the principal parameters utilized in these experiments is 

shown in Table 7.1; Ro is the Rossby number. 

Table 7.1 

Parameter Range of Experiments 

Ibbetson Wig eland 
Parameter Traugott & Tritton & Nagib 

(1958) (1975) (1978) 

Q sec-1 210 1-6.4 6-80 

x/M 17 .5-27.5 133-3600 20-180 

t sec 0.008-0.014 4-100 0.OU5-0.083 

ReM = UM/v 5500 1200 900-38UO 

ROM :I U/MQ 10 28-180 10-600 

Re = QZ /3 Vv 30 ? 7-23 
A 

QZ/3 AQ Ro = 1.65 ? 0.23-26 

~t/e: 3.6 ? 0.07-16 

WN's results show at least two effects of the rotation. In most 

cases, the turbulence intensity decays slower in the presence of in­

creasing rates of rotation, and the change is a smooth and monotone 

function of the rotation rate. The integral time scales of the 

turbulence velocity also increase with increasing rotation. In other 

cases, the turbulence intensity decays faster in the presence of small 

rotation rates and slower in the presence of larger rates of rotation. 

In those cases in which the turbulence intensity decays faster in the 

presence of rotation, the integral time scale of the normal components 

of the turbulence velocity showed no increase or decrease relative to 

the case of no rotation. The predominant effect of rotation seems to be 
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the decrease in the rate of decay of the turbulence with increasing 

rotation rate. The increasing rates of decay sometimes seen at low 

rotation rates appear to be a secondary effect. 

We shall show that rotation indeed decreases the rate of decay of 

the turbulence and that the relative increase of the rates of decay of 

the turbulence in some of the experimental results are explained by 

variations of the conditions at the entrance of the experimental test 

section. The latter are due to the interaction of the rotation with the 

wakes of the turbulence-generating grid. 

The current state of the art in turbulence modeling is described in 

the Evaluation Committee Report of the 1980-81 AFOSR-HTTM-Stanford Con­

ference on Complex Turbulent Flows, which states, "The fact that none of 

the present methods is influenced by rotation of the turbulent flow is 

an indication that present models are deficient in this respect." Tur­

bulence models which take rotation into account have been proposed by 

Rod! (1979) and Launder et ale (1977). Rodi's model contains a term 

proportional to the gradient of the rotation rate, which is zero if the 

rotation rate is constant and therefore has no effect on the flows con­

sidered here. The model proposed by Launder et ale (1977) is not well 

behaved at high rates of rotation, because the energy-dissipation rate 

can become negative. 

The effects of rotation on turbulence are both multifold and sub­

tle. In this chapter, those effects which occur only in the presence of 

mean strain are excluded, and we shall study the remaining ones. For 

example, the Reynolds stress equations for a homogeneous turbulent flow 

in uniform rotation about the x3-axis expressed in a rotating frame, 

i.e., the frame in which the mean flow velocity is zero, are: 

= 

(7-1) 

.. 
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where 

< > means time or spatial average, 

<!lij is the pressure-strain or redistribution, and 

e:ij is the rate of dissipation. 

When the first three of these equations are summed, the resulting equa-
(Q2 = 2 2 2 

tion for twice the turbulence energy < u1 + u2 + u3 » shows no 

direct effect of rotation. Furthermore, if the turbulence is isotropic, 

the rotation terms disappear entirely from Eqs. (7-1). These equations 

seem to imply that the effect of rotation is merely to redistribute 

energy among unequal Reynolds stress components. Rotation enters the 

equations for the components of the dissipation in a fashion almost 

identical to the way it enters the Reynolds stress equations, so no 

direct effects of rotation are found here either. 

Greenspan (1968) made a linear analysis of the Fourier components 

of the turbulence velocity and showed that rotation alters the phases 

but not the amplitudes of Fourier modes. Hence, rotation has no direct 

effect on any quadratic statistical quantity. However, odd moments of 

the turbulence velocities may be affected by rotation. In the equation 

for the energy-dissipation, 

(7-2) 

the first term in the right-hand side is affected by rotation and thus 

gives rise to an indirect effect on the dissipation. 

In this chapter, we shall use numerical simulation of the interac­

tion of homogeneous isotropic turbulence in uniform rotation as a tool 

for investigating the phenomena observed in the WN experiment and shall 

show that it is possible to duplicate the effects they observed. By 

taking advantage of the greater control over initial conditions that one 

has in computer simulations, we shall be able to offer explanations of 

their results. 
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7.2 Approach 

We shall use large eddy and full simulations in this chapter. 

These have been described earlier. Large-eddy simulations use the 

Smagorinsky model. The parameters of importance are cs = 0.21, 

16 x 16 x 16 and 32 x 32 x 32 grids, and the pseudospectral method 

for spatial derivatives, except for model terms in which second-order 

central difference was used. The initial spectrum is that of Comte­

Bellot and Corrsin (1971), and the initial energy and dissipation match 

the WN cases with Reynolds number based on the Taylor microscale 15. 

The experimental flow exhibited a small anisotropy that was not modeled 

in the computation, so comparisons between the experiment and the compu­

tational results cannot be completely quantitative. Full (defiltered) 

turbulence quantities were calculated from these simulations using the 

method developed in Chapter V. The filter width for all the cases had 

the SaIOO nondimensional value, 6£ € /Q3 = 0.244, as the one used in the 
o 0 

simulation of homogeneous isotropic turbulence shown in Fig. 4.1; where 
2 Q and € are the initial turbulence intensity and rate of dissipa-
o 0 

tion, respectively. 

The second approach was full simulation. Since this approach elim­

inates the uncertainty that arises from the subgrid-scale model in large 

eddy simulation, it is the preferred method for investigating the de­

tails of the effects of rotation on turbulence. For these simulations, 

the initial energy spectrum had a square shape and was allowed to decay 

in time until turbulence statistics of homogeneous isotropic turbulence 

were developed. The resulting turbulent velocity field was used as ini­

tial velcoity field in all the full simulations with a 64 x 64 x 64 

grid. The full simulations were performed by Dr. Robert &ogallo espec­

ially for this work, and are gratefully acknowledged. 

7.3 Computational Results 

The first exploratory simulations were large eddy simulations and 

were aimed at determining the feasibility of this approach. We selected 

one of the WN experimental cases which shows the turbulence intensity 

decaying faster for small rotation rate and slower for large rotation 

rate. The experimental results were obtained with rotation rates of 0, 
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6, 20, 40, 60, and 80 sec-I; the fastest decay of the turbulence was ob­

served at Q = 20 sec-I, and the slowest one decay at 0 = 80 sec-I; 

therefore, we elected to simulate the cases with 0'" 0, 20, and 80 

sec-I. The initial turbulence intensities, initial energy-dissipation 

rates, constant mean-streamwise velocity, generating grid mesh size, 

range of Reynolds number, and range of Rossby number of these cases are 

shown in the following table. 

Table 7.2 

Experimental Data of Wigeland and Nagib (1978) 

0 s -1 0 20 80 

Us m/s 5.3 5.45 5.7 

M m x 10-3 6.25 6.25 6.25 

X/M 20-70 20-70 20-70 

ReA 17.4-15.1 15.9-13.8 18.0-16.0 

RO A (infinite) 6.3-1. 2 1.4-0.4 

oq2/e: 0 0.5-2.7 2.4-15.7 

US/Q (at X/M :::I 20) 334.1 329.1 327.9 

E m2/s3 2.60 3.58 3.38 

(at X/M = 20) 

It was discovered that large eddy simulations with 16 x 16 x 16 

grids are incapable of simulating the case with rotation rate (O) of 

80 s -1 for a long enough period of time, because the length scales grow 

rapidly and invalidate the use of periodic boundary conditions. 

The next simulations used a 32 x 32 x 32 grid. Figure 7.1 shows 

the time history of the square of the streamwise velocity divided by the 

turbulence intensity, together with the WN experimental results. The 

inverse of the turbulence intensity is plotted to emphasize the differ­

ences of the turbulence energy levels at the later times. The results 

of the simulation agree with the experimental data, especially 1£ we 

consider that the turbulence energy levels were calculated by using the 

"defiltering" process given by Eq. (5-12), which introduces small 

errors. As in the WN experimental results, at the small rotation rate 

(O ... 20 sec -1) , the decay of the turbulence is fas ter than in the 
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unrotated flow, while at the high rotation rate (Q = 80 sec -1) , the 

decay of turbulence is slower than in the unrotated flow. 

It is important to observe that the initial turbulence intensities 

and rates of dissipation are not independent of rotation rate in any of 

WN's cases, including the ones presented above. In othr words, the 

effects of rotation on the turbulent flow in the test section are mixed 

with the effects of the initial condition. In general, both the initial 

turbulence intensity and initial rate of dissipation increase with 

increasing rotation rate. The increase of the initial turbulence inten­

sity is nearly proportional to the increase in the square of the mean­

streamwise velocity. In the absence of any other effect of the rota­

tion, the changes in the initial conditions would increase the rate of 

decay of the turbulence intensity. On the other hand, we shall show 

that a slower decay of the turbulence intensity with increasing rotation 

rate should be observed if the initial conditions of the turbulence of 

all the cases are the same at the entrance of the test section. For 

small rotation rates, the effects of the initial conditions may be more 

significant than the effects of rotation on the flow in the test sec­

tion. In the case presented in Table 7.2 and Fig. 7.1, the faster decay 

of turbulence intensity in the presence of the relatively small rate of 

rotation of 20 s-l is due to the larger initial rate of dissipation, 

while the slower decay of the turbulence intensity at 80 s-l is due to 

the effects of the rotation on the turbulence. Most of WN's experimen­

tal data show that the initial turbulence intensity and initial rate of 

dissipation increase with increased rate of rotation; however, the data 

of Table 7.2 show that the initial dissipation rate at Q a 20 s-l is 

larger than the one obtained at Q = 80 s-l. A possible explanation may 

be that the dissipation rate at Q a 80 s-1 has already been reduced by 

the effects of the strong rotation in the test section. 

In order to test the hypothesis that the primary effect of rotation 

on isotropic turbulence is to decrease the rate of dissipation, a fur­

ther set of simulations was made. Initial conditions identical to those 

used in the no-rotation case shown in Fig. 7.1 were used for all rota­

tion rates. Figure 7.2 shows the time history of the decay of turbu­

lence intensity with rotation rates of 0, 20, and 80 sec-I. The 
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results confirm the hypothesis. Figure 7.3 shows that the average 

length scale of the energy containing eddies, L = Q3/ E, grows more 

rapidly with increased rotation rate. 

Full simulations were used to investigate the effects of rotation 

on the turbulence in further detail. In these runs, the turbulence was 

allowed to develop in the absence of rotation for some time. When the 

skewness of the velocity derivative reached its equilibrium value, the 

rotation was "turned on." This, of course, is an impossibility in the 

experiment, because it violates Helmholtz's theorem, but there is no 

reason why one cannot simulate it. All the full simulations reported in 

this section had the same initial conditions; the nondimensional initial 

turbulence intensity was 4.88, the nondimensional rate of energy dissi­

pation was 16.78, and the initial Reynolds number based on the Taylor 

microscale was 15.4. Rotation rates of 0, 20, 40, and 80 s-1 were 

superimposed on the isotropic turbulent flow. The range of Heynolds and 

Rossby numbers of these full simulations were 15-10 and 0.015-

(infinite), respectively. Figure 7.4 shows the time history of the 

decay of the turbulence intensi ty. The turbulence intensity and the 

time have been nondimensionalized with the initial turbulence intensity 

and rate of dissipation; therefore, all the initial nondimensional tur­

bulence intensities of Fig. 7.4 are unity at time zero. These results 

further confirm the hypothesis that rotation decreases the rate of decay 

of the turbulence. 

It is reasonable to expect that rotation produces anisotropy. This 

is easily checked; as shown in Fig. 7.5, there are no significant dif­

ference among the components of the velocity fluctuation, but they ap­

pear to exchange energy with each other. The exchange is not periodic, 

but the time scale appears to be approximately the inverse of the rota­

tion rate; this could be anticipated from the Reynolds stress equations 

(7-1) • 

We noted above that the length scales grow more rapidly when rota-

tion is present. To investigate this in more detail, we computed the 

integral length scales: 
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= 

= 

2 
Qij(X1 ,O,O) dx1/Q 

2 
Qij(0,O,x3) dx3/Q 

(7-3) 

where Qij (xl ,x2 ,x3) is the two-point correlation function of the vel­

ocity components ui and Uj , and Q2 is the turbulence intensity. 

The results for the zero rotation case are shown in Fig. 7.6a. As ex-

pected, Lij ,1 '" Lij , 3 '" 2L 11 ,3 '" 2L33 , 1 in this case; all of these 

length scales appear to grow approximately linearly in time over the 

range studied. The results for 0 = 80s-1 are shown in Fig. 7.6b. In 

this case, the most dramatic increase is in the length scale in the 

rotation direction, involving velocity components perpendicular to the 

rotation axis, L11 ,3. 

7.4 Theory 

We shall now give a plausible explanation of the results described 

in the previous section. As with nearly all problems in turbulence, it 

is not possible to give a quantitative theory of the phenomenon, but it 

is possible to explain the main features. 

It is well known (Greenspan, 1968) that inertial waves are gener­

ated in a rotating fluid; so far as is known, this is the only essen­

tially new feature caused by rotation. In the absence of these waves, 

energy is cascaded from large eddies to small ones. The cascade process 

requires the turbulent eddies to be correlated in phase. It is proposed 

that the transport of energy by the inertial waves destroys the phase 

coherence and so inhibits energy transfer from large eddies to small 

ones; dissipation is thereby diminished, and the length scales are 

increased relative to what they would be in the absence of rotation. 

To see how this picture tits together, we note that linear invlscid 

equations for rotating flows have wave solutions of the form 

~(~L,Qt/L) exp(-i(k.~ + alOlt» 

with nondimensional frequency a, 

a '" 20-k/ IEII~1 
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As in all turbulent flows, spectral transfer of energy to a wave 

with frequency a at wave vector k can be caused by wave interactions 

with frequencies a' and a" at corresponding wave vectors k' and k" 

only if 

k' i: k" = k (7-5) 

However, the transferred energy must be in phase with the existing 

wave at wavenumber k to be effective. Thus we must also have 

a' * a" = a (7-6) 

In this case, we have resonant interactions. Non-resonant interactions 

are weak compared to the resonant interactions. 

Rogallo (pp. 11-12, 1981) examined the contribution of the nonlin­

ear terms to the time derivative of the wave and found that, " ••• only 

interactions between waves ~,~', and k" having ••• a * a' i: a" « 1 

are significant on the long-time scale". 

Pedlovsky (section 3.26, 1979) analyzed nonlinear interactions for 

two-dimensional inviscid shallow-water theory and also found equations 

(7-5) and (7-6) as necessary conditions for resonant interactions. 

Thus, system rotation diminishes the effectiveness of the nonlinear 

transfer of energy; the net result is a decrease in the amount of energy 

cascaded from the large eddies to the small eddies and therefore a re­

duced rate of decay of the turbulence energy. 

Finally, we observe that waves whose wave vectors are perpendicular 

to the rotation direction are not restricted by Eq. (7-6); Thus, system 

rotation should generate anisotropy in the length scales of the turbu­

lence. From a physical point of view and considering the turbulence as 

composed of vortex filaments, Reynolds (1983) suggests that mean rota­

tion produces gyroscopic forces on vortex filaments and tends to align 

them along the mean-rotation direction; thus, axisymmetric statistics of 

the small-scale fluctuations might be expected. Greenspan (1968) shows 

that at very low Rossby numbers the waves tend to organize themselves in 

the two-dimensional manner required by the Taylor-Proudman theory. The 

observed effects in the simulations accord with the theory: the correla­

tions along the rotation direction of the transverse velocity are more 
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affected than that of the longitudinal velocity; the length scales 

increase with increased rotation rates, but those in the rotation 

direction increase faster, a reflection of the Taylor-Proudman type of 

organization. 

7.5 Implications for Turbulence Modeling 

The great majority of calculations of turbulent flows use averaged 

equations, which require modeling for closure; for reviews of this sub­

ject see Reynolds (1976) and Rodi (1981). We restrict ourselves to the 

part of the subject needed for the flow under study here. 

Since the evidence indicates that the components of the turbulence 

remain nearly equal when rotation is imposed, there is no need for a 

model which computes any more than the turbulence intensity, Q2. On 

the other hand, we found that the length scales of the turbulence become 

anisotropic under the influence of rotation. One model which allows for 

anisotropy of the length scales is based on the tensor volume of turbu­

lence (Lin and Wolfstein (1980», but Reynolds (1982) has shown that 

some of the quantities in this model may not be finite in all situa­

tions, so we prefer not to use it. Another model based on the integral 

length scales of the turbulence (Donaldson, 1973; Sandri et al. t 1981) 

is currently at an early stage of development in which the length scales 

are assumed isotropic. 

For these reasons, we shall use a model of the turbulence based on 

differential equations for the turbulence intensity Q2 and dissipa­

tion e:; these are related to the length scale 1 by 1'" Q3/ e:, a 

common assumption in turbulence modeling. The equation for the turbu­

lence intensity is both simple and exact: 

(7-7) 

The dissipation equation must be modified to account for the effects of 

rotation. From the results of Fig. 7.3, one might guess that the effect 

is linear in the rotation rate, suggesting that the dissipation be 

modeled by: 
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dE 
dt = 

2 
- C

1 
~ - c QE 
Q2 2 

0-8) 

where Q is the rotation rate. For applications in inhomogeneous 

( / 1/2 flows, the rotation rate may be replaced by QijQij 2) , where 

1 (aui au.) .. _ J 
"1 Ox:" ox:-

J ~ 

is the rotation tensor of the mean flow. For Q .. 0, Eq. (7-8) reduces 

to a commonly used two-equation model. The constant cl is obtained by 

requiring the model to predict the decay of isotropic turbulence at high 

Reynolds number; Reynolds (1976) found cl" 11/3. The new term causes 

the turbulence intensity to decay more slowly as the rate of rotation 

increases. Furthermore, if the rotation rate is high enough, the turbu­

lence intensity does not decay. The system of equations (7-1) and (7-~) 

has the following analytical solution: 

= ( ( -c Qt)'~-n Q2 1 + 3. EO 1 - e 2 
o n Q2 c2 Q 

o 

(7-9) 

where n a 2/(c-2). 

This two-equation model with c2 = 0.15 has been tested against 

all of the WN experimental results, with excellent agreement. The ini­

tial values of Q and E, together with Reynolds numbers and ltossby 

numbers of three test cases are shown in Table 7.3. 

In Figs. 7.7 we shall show the prediction of the model for the 

three sets of WN cases described in the above table. Figure 7. 7a shows 

the prediction of the two-equation model for Case A, in which the turbu­

lence intensity appears to decay at a slower rate as the rotation rate 

is increased. Figure 7. 7b shows the prediction of the two-equation 

model for Case B, in which the turbulence intensity appears to decay 

faster at a rotation rate of 20 s-l and slower at a rotation rate of 

80 s-l; as shown earlier, the faster decay of the turbulence intensity 

i h f f 20 S-1 11 ff f n t e presence 0 a rotation rate 0 is rea y an e ect 0 

the initial conditions. Figure 7.7c shows the prediction of the two-

equation model for the WN Case C, which was used as a test case in the 

1980-81 AFOSR-Stanford-HTlM Conference on Complex Turbulent Flows. No 
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entry to the conference was able to predict this flow, but the model 

suggested here has no difficulty with it. 

Table 7.3 

Experimental Data of Wigeland and Nagib (1978) 

Case A, M 0.UU39 m 

Q (s-l) 0 20 80 

U (mls) 8.69 8.66 8.82 

Us (m/s) 8.69 8.67 8.96 

Q2 (m2/s2) at Ut/M = 20 0.2125 0.2021 0.2314 

E (m2/ s3) at Ut/M = 20 17.67 16.45 18.19 

l{e 17-14 17-14 18-15 

Ro co 13.5-1. 7 3.6-0.6 

Q Q2/E 0 0.25-1.9 1.U-9.5 

Case li, M = 0.OU625 m 

Q (s-l) 0 20 80 

U (m/s) 5.33 5.4S 5.48 

Us (m/s) 5.33 5.46 5.71 

Q2 (m2/s2) at Ut/M = ~O 0.0850 0.09v6 U.0994 

E (m2/s3) at Ut/M = 20 2.649 3.591 3.300 

Re 17-15 16-14 18-16 

l{o co 6.3-1.2 1.5-0.4 

Q Q2/E 0 0.5-2.7 2.9-15.7 

Case B, M = 0.OU254 m 

Q (s-l ) 0 20 80 

U (m/s) 8.51 8.58 8.79 

Us (m/s) 8.51 8.59 8.93 
Q2 (m2/s2) at Ut/M '" 20 0.1770 0.1774 0.1969 

E (m2/ s 3) at Ut/M = 20 24.27 22.56 224.2 

Re 12-9 12-10 14-11 

Ro co 16-1.2 4-0.4 

Q Q2/E 0 0.16-1.9 U.07-8.4 
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The rotation term in Eq. (7-8) may play an important role in shear 

flows. As shown by Ferziger and Shaanan (1976), the effect of the rota­

tion tensor inherent in the flow (which is equivalent to the vorticity) 

adds to the externally imposed rotation. It is possible that the new 

term proposed here will help in explaining differences between strained 

and sheared flows. Calculations of these flows are shown in Chapter IX. 

7.6 Conclusions 

We have shown that full and large eddy simulation can be used to 

aid understanding the effect of rotation on homogeneous isotropic turbu­

lence. The primary effect of rotation on the turbulence is a decrease 

in the dissipation and increase of the length scales, principally those 

in the direction of the axis of rotation. In the experimental results, 

there is a complex interaction between rotation and turbulence in the 

generation of rotating turbulence, which decreases the initial length 

scales of the turbulence and increases the initial turbulence intensity; 

the details of this interaction are not understood. The primary effect 

of rotation on turbulence is a decrease in dissipation, leading to an 

increase in the length scales, principally those in the direction of the 

axis of rotation. 

The observed effects can be explained in terms of inertial waves 

created by the turbulence transporting energy and thus destroying the 

phase coherence needed to cascade energy to the small scales. 

Finally, a two-equation model which is capable of reproducing the 

observed effects has been offered. 
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8.1 Introduction 

Chapter VIII 

HOMOGENEOUS TURBULENT SHEAR FLOW 

Most flows of engineering interest are high Reynolds number turbu­

lent shear flows. In these flows there is production of turbulence due 

to the gradients of the mean velocity field. 

Homogeneous turbulence with mean shear S is a simple shear flow 

in which one can investigate the effect of shear on the turbulence. 

Several researchers have studied homogeneous shear flows using linear 

rapid distortion theory, with apparent success. Deissler (1961, 1970, 

1972), Townsend (1976), and Rogallo (1981) are examples of such analy­

ses. Any shear S can be decomposed into a plane strain r = S/2 and a 

rotation Q::a S/2. Most of the effects predicted by linear theory are 

due to the strain. For small strain ratios re, the linear theory 

shows that the behavior of initially isotropic turbulence changes in the 

same way whether shear or strain are applied (see Townsend (1976), p. 

77, Eq. (3.1.9) and p. 84, Eq. (3.12.5». For large strain ratios re, 
differences appear; however, the results are questionable, because non­

linear effects become important and the theory is no longer valid. 

Experimental investigations of homogeneous turbulent shear flows 

have been carried out by Rose (1966, 1970), Champagne, Harris, and Corr­

sin (1970), Mulhearn and Luxton (1975), Harris, Graham, and Corrsin 

(1977), and Tavoularis and Corrsin (1981). 

Champagne et ale and Mulhearn et ale found that the components of 

the turbulence intensity reach an apparently asymptotic state in which 

turbulence production and dissipation are equal. However, the integral 

length scales and Taylor micros cales develop anisotropy and continue to 

increase with shear ratio, St. 

For large shear ratios, Harris et ale and Tavoularis et ale find 

that the components of the turbulence intensity and the length scales 

increase continually with the shear ratio. The Reynolds numbers RA 

based on the Taylor microscale and the magnitude of the turbulent 
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velocity in the shear direction vary from about 70 to 300 in their 

experiments. 

Another approach to investigating these flows is full simulation. 

This approach is limited to RA, < 70 on present computers. Kogallo 

(1981), Feiereisen et ale (1981), and Shirani et ale (1981) have 

obtained results qualitatively similar to the experiments by this 

technique. The normal components of the Reynolds stress tensor develop 

anisotropy and appear to reach a state in which their ratios remain 

constant, but the off-diagonal components increase continually with 

shear ratio. Rogallo's results show good quantitative agreement with 

the Reynolds stress anisotropy of Tavoularis et ale 

Large eddy simulation should be able to reproduce the experimental 

results at higher Reynolds numbers. Shaanan et ale (1976) used this 

technique to simulate the experimental results of Champagne et ale 

(1971). Qualitative agreement was obtained, but their simulation did 

not use proper boundary conditions. Also, they did not filter the 

experimental results or defilter the numerical results in order to allow 

quantitative comparisons, and they were limited to a 16 x 16 v 16 

numerical grid. 

We shall simulate the experimental results of Champagne et ale The 

defiltering method developed in Chapter V will be used to predict the 

development of the turbulence intensity, and the results will be com­

pared to experimental data. These results will also be used to analyze 

turbulence models. 

Understanding of homogeneous turbulent shear flows is useful in the 

development of turbulence models. We used these flows in Chapter IV to 

test subgrid scale models for large eddy simulation. Here we shall use 

them to determine some of the constants of time average models. These 

models are able to reproduce data for homogeneous strained flows, but 

they have no provision for rotation. Since shear is a combination of 

plane strain and rotation and we presented a model for rotation in 

Chapter VII, it is natural to investigate whether the addition of rota­

tion to the model has any effect on the predictions of models for homo­

geneous shear flow. 
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8.2 Approach 

We shall use large eddy simulation of homogeneous turbulence exper­

iencing a constant mean shear S = au 1 fax2 , as the main tool in this 

chapter. The initial shape of the three-dimensional energy spectrum is 

that of Comte-Bellot and Corrsin (1971). The initial turbulence inten­

sity and energy-dissipation rate are chosen to match the experimental 

results of Champagne, Harris, and Corrsin (1971), hereafter referred to 

as CHC. 

Taylor's hypothesis is invoked in order to compare the time history 

results of the simulation with the downstream development of the exper­

iment. There is little doubt of its validity in these flows. The 

subgrid scale turbulence is modeled using the Smagorinsky model with and 

without the scale similarity model described in Chapter VI. The simula­

tions are alias-free and were run with a 32 x 32 x 32 grid on the 

ILLIAC-IV at NASA-Ames Research Center. 

8.3 Large Eddy Simulation Results 

Figures 8.1a and 8.1 b show the time history of the CHC turbulence 

intensity, together with the filtered and defiltered turbulence inten­

sities obtained by large eddy simulation with and without the scale­

similarity model. The shear rate S = 12.4 s-1 in all cases. Defil­

tering was accomplished using Eq. (5-12). The agreement between the 

numerical and experimental results is very good, especially in the cases 

in which the scale-similarity model is included. 

Figures 8.2a and 8.2b show the time history of the anisotropy of 

the Reynolds stresses of the filtered flow field. The anisotropy of the 

Reynolds stresses is defined as 

(8-1) 

Lacking a defiltering process for the anisotropic component of the flow 

field, we cannot compare these statistics with the experiment. Figure 

8.2c shows the time history of the bij obtained by CRC. The full flow 

field shows less anisotropy than the filtered flow field, since the 

smaller eddies are more isotropic than the larger ones. 
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Figure 8.3a and 8.3b show the time history of each term of the 

turbulent kinetic energy budget of the filtered flow field. As in the 

experiment of CRC, the turbulence production and dissipation almost 

balance after St a 3; there is a slow growth of the turbulence inten­

sity in the prediction based on the scale-similarity model. 

Figures 8.4, 8.5, and 8.6 show the time history of the budget for 
-2 -2 -2 -2 < u1 >, < u2 >, and < u3 >, respectively. In the < u

1 
> budget, 

the turbulence production and the pressure-strain term balances the 

turbulence dissipation. On the other hand, the turbulence dissipation 
-2 d-2 tends to balance the pressure-strain term in the < u

2 
> an < u

3 
> 

equations. The production, pressure-strain, and dissipation terms are 

smaller than the respective terms of CHC. The differences between the 

full and filtered flow fields can be ascribed to differences in the 

Reynolds and shear numbers. The full field has a Reynolds number 

and a shear number 

R = 
A 

130 

". 0.71 

at St = 3, while the filtered flow field has a Reynolds number 

= 

and a shear number 

A22 ,lf J 3Q; 
(v + v ) 

't 

S~2,lf ". 3 

.J Q;/3 

10 

(8-2) 

(8-3) 

(8-4) 

(8-5) 

The larger shear number of the filtered flow field explains the stronger 

anisotropy, while the smaller Reynolds number explains the smaller mag­

nitudes of the components of the energy budget. 
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8.4 One-Point Reynolds Stress Closure Model 

Here, we shall apply our numerical results to Reynolds stress 

models because this flow is highly anisotropic. Specifically, we shall 

consider the turbulence models of Launder, Reese, and Rodi (1975), here­

after referred to as LRR, Wilcox and Rubesin (1980), hereafter referred 

to as WR, and Reynolds (1976), hereafter referred to as R. For homogen­

eous turbulent flows, these three models have the same structural form, 

and differ only in the values of the model constants. For this case, 

these models reduce to a set of six equations. These are: 

Kinetic energy equation: 

Anisotropy equations (5): 

dg2 
... 

dt 2P - 2e: 

dbij .. 
dt 

2P + (C 4 - 2) e: 
g2 bij - (l - Cp1 ) Pij - Cp2Dij - Cp3Sij 

Dissipation equation: 

where 

de: 
dt ... 

is the production and 

:0 -

... 

-
(pij - ~ oij P)/g2 

(D ij - ; 0 ij P ) / g2 
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(8-6) 

(8-7) 

(8-8) 

(8-9) 

(8-10) 

(8-11) 

(8-12) 

(8-13) 



(8-14) 

is the rotation and 

(8-15) 

The constants of the three models mentioned above and the new pro­

posed model are given in Table 8.1. 

Table 8.1 

MODEL CONSTANTS FOR REYNOLDS STRESS MODELS 

Model C1 C2 C3 C4 Cp1 Cp2 Cp3 

LRR 3.8 0 2.88 3 8.4/11 8Cp1 - 6 6Cp1 - 4.4 

WR 11/3 0 35/11 9 0.5 0.5 2/3 

R 11/3 0 2.0 2.5 2.3/3 8Cp1 - 6 6Cp1 - 4.9 

Proposed 11/3 0.15 3 2.5 2.3/3 8Cp1 - 6 6Cp1 - 6.9 

The new model is an extension of model 1<. to include the rotation 

term in the e:-equation proposed in Chapter VII. It also includes a 

modification of the value of the model constant C3 based on the 

experimental results of homogeneous strained turbulence. ~ach model 

constant has been determined from experimental results. We shall 

briefly describe their significance. 

• C1 determines the rate of decay of the turbulence intensity in 

homogeneous isotropic turbulence. All models predict 

where 

Q2 1 +~ t 
( 

2e: )-n 
o 2Q2 

n = 

o 

2 
C - 2 1 
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The experimental results of Comte-Bellot and Corrsin (1971) and 

others indicate that 1.1 ~ n ~ 1.3 so that 3.5 ~ Cl .s. 3.8. Reynolds 

(1976) proposed Co = 11/3 = 3.67 based on a theoretical argument that 

leads to n = 1.2. 

• Cz determines the rate of decay of the turbulence intensity in 

homogeneous rotating flows, as shown in Chapter VIII. The value found 

there is C2 = 0.15. None of the other models uses this constant. 

• C3 determines the rate of change of the turbulence intensity 

in homogeneous strained turbulent flows. 

Figure 8.7 shows the time history of the turbulence intensity and 

anisotropy of the Reynolds stresses of Tucker and Reynolds (1976) with a 

plane strain rate r = 4.45 s-l and initial dissipation EO co U.63 

m2/s 3 , together with the prediction of the four models LRR, WR, R, and 

the new model. All models give a good prediction of the experimental 

results. 

Figure 8.8 shows the experimental results obtained from Gence and 
-1 

Mathieu (1979) with a much larger plane strain rate r = 32.23 s 

and initial dissipation EO:: 5.5 m2/ 53. Models LRR and the new model 

produce excellent predictions of the experimental results, while models 

WR and R are not as satisfactory. Changes of the initial energy-

dissipation rate do not improve the predictions of models WR and R. 

• C4 determines the rate of return to isotropy of homogeneous 

turbulence. In the absence of mean strain or rotation, all of the 

models predict 

= (Q2)-(C4 -2)/2 
2 bi · Q J o 
o 

(8-18) 

Thus, return to isotropy (bij :: 0) is obtained as 

None of the turbulence models tested in the 1980-IH AFOSR-HTTM­

Stanford Conference on Complex Turbulent Flows was able to predict accu­

rately the return to isotropy of Uberoi and Wallis (1966) and Tucker and 

Reynolds (1968). Lumley (1978) proposed making C4 a function of the 

Reynolds number and the second and third invariants of the anisotropy of 

the Reynolds stresses, i.e., bij bij and b ij bjnbni. However, there 
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are serious doubts that a model with a single length scale can predict 

all these cases, as the length scales are known to be anisotropic. 

Cp1 ' Cp2' and Cp3 model the rapid part of the pressure strain 

terms. LRR proposed the relationships given in Table 8.1, which relate 

Cp2 and Cp3 to Cpl. The value of Cp1 is determined by comparison 

with experimental results. In particular, Reynolds (1976) determined 

Cp1 using the experimental results of Champagne, Harris, and Corrsin 

(1970). 

The results for homogeneous sheared turbulence are highly sensitive 

to the initial conditions, especially the initial dissipation Eo' 

which is usually not reported in the experimental results. Following 

Launder (1975), we shall determine EO by fitting to the data. 

Figures 8.9 shows the time evolution of the Reynolds stresses of 

Champagne, Harris, and Corrsin (1970), together with the predictions of 

the models. Model LRR with EO = 0.91 m2/ s 3 gives a good prediction of 

shear stress < -u1u2 >, and the normal stresses < u~ > and < u~ >; 
however, it underpredicts < u~ > by 20%, and the turbulence intensity 

Q2 by 10% at St - 2. Since the LRR model predicts the production of 

turbulence accurately, the underprediction of the turbulence intensity 

must be due to the overprediction of the dissipation rate. The proposed 

model with Eo = 1.06 m2 / s 3 gives predictions similar to those of LRR. 

Models WR and R with EO = 0.65 and 1.14, 

shown for comparison. 

respectively, are also 

Figures 8.10 shows the time history of the Reynolds stresses of 

Harris, Graham, and Corrsin (1977), together with the predictions of the 

models. The initial dissipation Eo has been determined by fitting the 

numerical calculations to the experimental turbulence production. 

Models B, LRR, WR, and the new model R used EO'" 1.5, 2.6, 4.3, 3.0 

m2 I s3, respectively. In this case, the predictions seem better, but 

this is largely because the experimental data contain considerable 

uncertainty. 
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Chapter IX 

HOMOGENEOUS SHEARED TURBULENCE IN ROTATING FLOWS 

In this chapter, we shall analyze the effects of rotation on turbu­

lence production in homogeneous shear flows. These flows are of rele­

vance in geophysics and turbomachinery. The main effect of rotation is 

an increase or decrease of the turbulence production, depending on the 

relative directions and magnitudes of the rotation and the shear. 

An analogy between system rotation, streamline curvature, and buoy­

ancy in turbulent shear flows was made by Bradshaw (1969), and the re­

sults for rotating flows may therefore apply to other flows as well. 

9.1 Introduction 

The augmentation or suppression of the turbulence production by 

rotation in shear flows has been shown both experimentally and numeric­

ally. Halleen and Johnston (1967) found these effects in a fully devel­

oped flow in a rotating rectangular duct. Their results can be fit 

using a modified mixing length model proposed by Bradshaw (1969). 

~ .. 1 - A R1 T I"' 
o 

(9-1) 

where ~ is a constant (2 < ~ < 6), and R1 is the local gradient 

Richardson number defined by 

Ri .. - 20(S - 20)/82 (9-2) 

where 0 is the system rotation rate, and S - OU 1 /ox2 is the rate of 

shear and Q is the rotation rate about the x3-axis • 

The mixing length is defined by 

(9-3) 

and the production of turbulence P is 

p .. (9-4) 



Equation (9-1) indicates that the local stability parameter is the 

Richardson number defined by Eq. (9-2). For R1 < 0 (~ < 0 or 

~ > ~ ), the rotation destabilizes the turbulence, i.e., it increases 

the mixing length, production, and turbulence intensity. Maximum 

production obtains when R ... -1/4 (0 = .!.). 
i S 4 

Large eddy simulations of Shaanan et al. (1975) with a 16 x 16 x 

-1 16 grid, shear rate S = 12.9 s , and various Richardson numbers, 

gave results which are in qualitative agreement with the experimental 

data. They found Eq. (9-1) valid with ~ '" 1.7. However, Shaanan et 

al. improperly used periodic boundary conditions. 

Ferziger and Shaanan (1976) analyzed the two-dimensional Reynolds 

stress equations with constant shear and rotation rates while neglecting 

the pressure redistribution and dissipation terms. In this case, the 

Reynolds stresses have exponential solutions of the form e yt , where 

r 

R 

y = (9-5) 

S/2 is the plane strain component of the shear rate, and 

S/2 - 20 represents the rotation component of the shear rate 
minus the superimposed rotation, which can be shown to 
be 20. 

Maximum production results when R = 0 (~ = i ), which is the case of 

pure strain in the fixed frame. Any rotation relative to this case 

inhibits production; in particular, there is no production for R2 > r2 

( 0 Q 1) S < 0 or S > l' . The growth parameter y can be expressed as 

y = 2S 1- Ri. 

Tritton (1981) disputed some of the statements made by Ferziger and 

Shaanan (1976). In particular, he argues that, "They then show that the 

most vigorous turbulence production occurs in the case of zero mean flow 

vorticity (for a given mean flow rate-of-strain)" and that they claim 

"the effect of externally imposed rotation (i.e., CorioUs forces) 

simply adds to the rotation tensor, so the case we are considering is 

quite general." Therefore, Tritton argues that, "If correct, this 

statement would imply that the configuration ••• would be most strongly 

destabilized when 0'" -S/2. There is thus a discrepancy, "because a 
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linear superposition of a constant shear rate S and a constant rota­

tion rate 0 on a turbulent flow has zero mean flow vorticity when o/S 

= 1/2 and maximum production is obtained when o/s ... 1/4." 

This discrepancy is resolved if we recall that the Reynolds stress 

equations show a linear superposition of a constant shear rate S and a 

constant rotation rate 20, not 0, in a fixed frame. Then zero mean 

flow vorticity is obtained when o/s ... 1/4 (Ri;: -0.25) in a fixed 

frame of reference. Tritton is correct in saying that, "A linear super­

position of a shear flow and a rigid-body rotation ••• in an inertial 

frame ••• is not equivalent to a shear flow with externally imposed 

rotation." However, Ferziger and Shaanan show that both flows yield the 

same Reynolds stress equations, when the magnitude of the superimposed 

rigid-body rotation in a fixed frame is twice the magnitude of the ex­

ternally imposed rotation in the rotating frame. This analogy helps to 

explain the stabilizing effect of rotation with respect to the R1;: 

-0.25 case, even though the latter case does not represent a pure 

strain flow in a rotating frame. 

Bertoglio, Charnay, and Mathieu (1979) and Bertoglio (1982) made a 

linearized spectral analysis of homogeneous turbulent shear flows in a 

rotating frame. The initial spectrum corresponds to the experiment of 

Comte-Bellot and Corrsin (1971) and is the same one used in our simula­

tions. The initial nondimensional shear rate is SQ2/E;: 43.46. Their 

analysis used the two-point correlation equations with mean shear in a 

rotating frame and -0.5 ~ Q/S ~ 0.5. In these simulations, the triple 

velocity correlations were neglected, periodic boundary conditions were 

applied, and no coordinate transformation was used; thus, the transfer 

of energy between eddies of various sizes was omitted. These equations, 

like all rapid distortion models, do not represent the long time evolu­

tion of the turbulence, but they are useful at shorter times. 

Their turbulence intensity, Reynolds shear stresses, and averaged 

pressure-strain terms are smooth "Gaussian-shaped" functions of o/s; 
they reach a maximum when Q/s ... 1/4. However, the maximum magnitudes 

2 2 of < u1 > and < u2 > are obtained for o/s;: 1/12 and o/s a 5/12, 

respectively. The averaged pressure-strain terms <l>ij show relative 

maxima where the corresponding Reynolds stresses are maximum. 

87 



In summary, numerical and experimental evidence indicates that max­

imum growth of turbulence intensity obtains when Ri = -0.25 (Q/S = 
1/4). Rotation destabilizes the turbulence when Ri < 0, stabilizes 

the turbulence when 

limits Ri = 0 when 

Ri > 0, and is neutral when Ri = 0. However, the 

Q/S = 1/2 or Q/S = 0 represent different physi-

cal flows; the former one is a shear flow in a rotating system, while 

the latter one is a pure shear flow in a fixed system. 

The effect of rotation on turbulence production can be understood 

by first considering the case of pure strain. In this case, the turbu­

lence intensity increases in the direction(s) undergoing compression and 

decreases in the directions suffering extension. This can be explained 

by vortex-stretching arguments and causes the principal axes of the 

Reynolds stress tensor to be aligned with those of the imposed strain. 

As the turbulence is distorted by the strain, it becomes more capable of 

absorbing energy from the imposed strain flow. This would lead to expo­

nential growth but is limited by nonlinear effects, including spectral 

transfer and pressure redistribution. When rotation is added to this 

flow, the prinCipal axes of the Reynolds stress are rotated away from 

those of the strain field. The resulting misalignment of the principal 

axes of the strain and the Reynolds stress reduces the efficiency with 

which the turbulence can absorb energy from the strain field and reduces 

its rate of growth. 

We shall analyze homogeneous turbulent shear flows in solid-body 

rotation using large eddy simulation. 

9.2 Large Eddy Simulation Results 

We shall make large eddy simulations of homogeneous turbulent shear 

flow subject to solid body rotation. The rotation is about the x3-axis 

(in either the fixed or rotating coordinate system), while the shear 

rate is in the rotating frame of reference. 

The equations of motion and the numerical method were described in 

Chapter II; the shearing transformation is used. The pseudospectral 

method was used on a 32 x 32 x 32 grid. The initial conditions of the 

turbulence were Q2 = 0.1539 m2S-2 , E = 0.4919 m2S-3, and the initial 

energy spectrum with ~ = 0.03 m is shown in Fig. 4.2; they correspond 
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to the experiment of Comte-Bellot and Corrsin (1971). Two subgrid-scale 

models were used, and they are described in the captions of Figs. 9.1a 

and 9.1b. Figures with subindex a use the Smagorinsky model with Cs a 

0.19, while figures with subindex b use the Smagorinsky and scale­

Similarity model with Cs = 0.165 and cr = 1.1. The values of the 

imposed rotation rate 0 and shear rate S are given in Table 9.1. 

These flows represent an ample range of the most important effects on 

homogeneous sheared turbulence. They include the case with the the most 

destabilizing effects of rotation (Ri = -0.25, O/S a 1/4), the neut­

ral effects of rotation (Ri a 0, O/S'" 1/2), no system rotation or 

pure shear flow (Ri'" 0, O/S ... 0), pure rotation or no mean strain 

effects (Ri ... ex», and "isotropic" turbulence or no mean velocity 

gradients (S ... 0 = 0). 

Table 9.1 

Rotation Rate Q and Shear Rate S Used 

(a ... 12.9 s-l) 

0 S Ri QQ~/EO QQ~/ Eo 

0 0 - 0 0 

0 a 0 0 4.036 

a/2 a 0 2.018 4.036 

a/4 a -1/4 1.009 4.036 

-a/2 0 ex> -1.018 0 

No attempt to defilter the numerical results has been made, due to the 

lack of data to which the results could be compared. 

Figure 9.1 shows the time evolution of the turbulence intensity for 

the cases shown in Table 9.1. In these simulations the flow field was 

allowed to develop from St ... -2.2 through St - 0, before the shear 

and/or rotation were applied. As expected, maximum increase of the tur­

bulence intensity is obtained when Ri'" -0.25 (O/S ... 1/4). In contrast 

to Bradshaw's (1969) and Ferziger and Shaanan's (1976) analyses, the 

turbulence intensity increases faster in the pure shear flow (Ri'" 0, 

O/S ... 0) than in the case of shear in a rotating frame (Ri - 0, Q/S'" 

1/2). The case of pure rotation S ... 0 and Q ... -a/2 shows only small 
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difference from that of the decay of isotropic turbulence, because thl~ 

rotation rate is small compared to those in the cases simulated in 

Chapter VII. 

Figure 9.2 shows the time evolution of the shear component of the 

Reynolds stress anisotropy b12• The growth of the turbulence intensi­

ties shown in Fig. 9.1 can be largely explained by the behavior of the 

shear stress, which in turn governs the production of turbulence. This 

is especially significant in the Ri = 0 with Q/S = 0 and Q/S = 1/2, 

because there are no other significant differences in the turbulence 

statistics of these two cases, as will be seen in the following figures. 

Figures 9.3, 9.4, and 9.5 show the time history of the normal co~ 

ponents of the Reynolds stress anisotropy tensor; they are relatively 

small, except when Ri = O. As could be anticipated by examining the 

production terms in the Reynolds stress equations, b11 ~ - b22 > 0 and 

b33 .. 0 in the case of pure shear (O/S = 0), while b22 ~ -bll > 0 

and b33 " 0 in the case of shear in a rotating frame (DIS = 1/2). 

The absolute magnitudes are of the same order of magnitude in both 

cases. A similar analysis of the production terms of the Reynolds 

stress equations indicates that 2b11 .. 2b22 ~ -b33 > 0 in the case of 

shear in a rotating frame (Ri = -0.25, o/s = 1/4), as shown in Figs. 

7.3 for at > 3; however, for Ri = -0.25, the absolute magnitudes 

are much smaller than the absolute magnitudes ob-

tained for Ri = O. These figures also show the Coriolis effects on the 

normal stresses in the case of pure rotation when Ri = ~ (S = 0), as 

compared to the isotropic case when D = S = O. 

Figures 9.6 and 9.7 show the time history of the production and 

dissipation of turbulence, respectively, nondimensionalized by the dis-

sipation at at = O. 

and dissipation for 

There is a large increase in both the production 

Ri = -0.25 (pIS = 1/4), with the larger increase 

in the production. Production seems to reach an asymptote for Ri = 0; 

pIE .. 2.1 
o 

in the case of pure shear (o/s = 0), while pI E .. 1 
o 

in 

the case of shear in a rotating frame (o/s = 112). On the other hand, 

dissipation shows a relatively slow variation with time for these cases, 

a small increase in the former case and a small decrease in the latter 

one. The differences in the production are mainly due to the 
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differences in the shear stresses, as shown previously; the differences 

in the dissipation are mainly due to the growth of the length scales, as 

will be shown in Figs. 9.19, 9.20, and 9.21. The fastest decay of the 

dissipation obtains in the case of "isotropic" turbulence (S ... 0 .. 0) 

and pure rotation (S'" 0), being a little slower in the latter case. 

There is, of course, zero production in these two cases. Finally, Figs. 

9.6 and 9.7 show the relative significance of the mean strain rate and 

the mean rotation rate on production and dissipation in the cases of 

pure shear, Ri - 0 (S'" a, 0 = 0), and pure rotation, Ri" m 

(S =- 0,0= -a/2). 

Figures 9.8 and 9.9 show the time his tory of the production for 
-2 -2 < u1/2 > and < u2/2 >, respectively, nondimens10nalized by the total 

dissipation at at = O. As should be expected, the production rates 

are nearly equal and increase nearly exponentially in the case of shear 

in a rotating frame when Ri = -0.25 (O/S .. 1/4). The other cases have 

already been analyzed in Figs. 9.6 and 9.7. There is production of 
-2 < ~2 /2 > in the case of pure shear when (Ri'" 0 , O/S =- 0) and of 

< u2/2 > in the case of shear in a rotating frame (Ri'" 0, Q/S" 

1/2). 

Figures 9.10, 9.11, and 9.12 show the time history of the dissipa-
-2 -2 -2 

tion of < u1/2 >, < u2/2 >, and < u3/2 >, respectively, nondimen-

sionalized by the total dissipation at at = O. These are smaller than 

the non-zero components of the production shown in Figs. 9.8 and 9.9. 

Dissipation increases almost linearly and equally for all the components 

for Ri = -0.15 (Q/S = 1/4). On the other hand, dissipation increases 
-2 only for < u/2 > only in the case of pure shear for Ri == 0 (O/S = 

0), but is nearly constant or decreases with time in all the other 

cases'l 

Figures 9.13, 9.14, and 9.15 show the time history of the pressure 
-2 -2 -2 

strain for < u1/2 >, < u2/2 >, and < u/2 >, respectively, nondi-

mensionalized by the total dissipation at at a O. The absolute magni­

tudes of the pressure-strain components increase almost linearly with 

time and are larger than the corresponding dissipation components when 

Ri .. -0.25 (P./S" 1/4). On the other hand, they are nearly constant 

and have absolute magnitudes similar to those of the corresponding 
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dissipation components when R1 = 0 (O/S = 0 and o/s = 1/2). In all 

the shear cases, the pressure-strain components subtract energy from the 

first two components of the turbulent kinetic energy and add energy to 

the third. 

indicate that -21 < ul 2 > and In summary, the energy balances 

< u~/2 > increase with time due to 
-2 the production and < u3/2 > 

increases due to the pressure strain in the case of shear in a rotating 

frame (Ri = -0.25, o/s = 1/4). On the other hand, for Ri = 0 

(either O/s = 0 or o/s = 1/2) the pressure-strain and dissipation 

almost balance each other for < u~/2 >, but do not balance the produc­

tion component for either < ui/2 > or < ui/2 >. The main difference 

between these two last cases lies in the larger production in the case 

of pure shear flow. 

Figures 9.16, 9.17, and 9.18 show the time history of the Taylor 

microscales, 71.11 ,1' 71.22,1' 71.33,1' nondimensionalized by the filter 

Width, respectively. All these length scales are measured in the rotat­

ing frame when the system rotation is not zero. Maximum growth of the 

length scales obtains when Ri = -0.25 in all cases; however, 71.33 ,1 

is approximately half of the other two microscales. Strong growth of 

the length scales is also obtained when Ri = O. The longest length 

scale is associated with the component of the turbulence with th largest 

production; thus, All 1 , is largest when o/s = 0, and 71.22 1 is , 
largest when o/s ... 1/2, while 71.33,1 is the smallest and similar in 

all the shear cases. 

Figures 9.19, 9.20, and 9.21 show the time history of the integral 

length scales Ll1 ,1' L22 ,1' L33 ,1. The behavior of the integral length 

scales is similar to that of the Taylor microscales, but the magnitudes 

are larger. 

Figures 9.22, 9.23, and 9.24 show the time history of the normal 

velocity-derivative skewnesses. Maximum negative skewness (-0.4) is 

obtained for isotropic turbulence (0 = s = 0). The magnitude of the 

skewness is strongly reduced in the case of pure rotation (S = 0 and 

o = -aI2), especially in the rotation direction. For Ri = 0, signif­

icant differences are observed between the pure shear flow (0 = 0, S = 
a) and the shear flow in a rotating frame (0 = a12, S = a). In the 
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former case, the magnitude of the skewness is only slightly reduced in 

the xl-direction, positive in the x2-direction, and small and 

negative in the i
3
-direCtion. In the latter case, the magnitude of 

the skewness is reduced to less than half the isotropic value in the 

iI-direction, nearly 

preceding case in the 

zero in the i2 -direction, 

i 3-direction. In the case 

and similar to the 

Ri = -0.25, the 

skewness is reduced to nearly zero in all directions, indicating that 

the energy transfer to the small scales has been greatly diminished. 

9.3 Conclusions 

Our simulations indicate that Bradshaw (1968) and Ferziger and 

Shannan (1976) are correct in saying that the most energetic homogen­

eous turbulent shear flow in a rotating frame obtains when Ri = -0.25 

(O/S = 1/4). However, their formulations do not represent the behavior 

over the full range of the ratio of shear and rotation rates. In par­

ticular, there are significant differences in the turbulence statistics 

between the two Ri = 0 cases, namely, pure homogeneous shear flow 

(O/S = 0) and homogeneous shear turbulence in a rotating system (O/S a 

1/2). While the normal components of the Reynolds stress anisotropy 

tensor and the length scales show similar behavior in both cases, the 

system rotation generates smaller shear stress, production, turbulence 

intensity, and velocity-derivative skewness. These differences are due 

to the nonlinear interactions of the turbulence under the system rota­

tion, which increases the pressure-strain correlation in the generation 

of the shear stress and diminishes the energy transfer to the small 

scales. Turbulence models of the future should take into account these 

effects, in order to be able to predict homogeneous turbulent shear 

flows in a rotating frame. 

Lastly, we remark that development of turbulence modeling for 

engineering applications on shear flows in solid-body rotation should 

also consider the large anisotropy and rates of change of the length 

scales. No current model, other than that in development by Donaldson 

(1973) and Sandri et ale (1981) and a recent one by Reynolds (1982) 

includes this feature. 
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Chapter X 

CONCLUSIONS 

This investigation has focused on three-dimensional large eddy 

simulation of homogeneous turbulent flows. 

The physical bases of large eddy simulation have been analyzed, 

leading to the conclusion that the best information for modeling the 

subgrid-scale turbulence is obtained from the smaller resolved eddies. 

A "defiltering" method that is able to predict the characteristic 

scales of full turbulence with accuracy has been proposed. This method 

has been tested against experimental results on homogeneous isotropic, 

rotating, and sheared turbulence. 

Previous authors assumed that the velocity scale to be used in the 

eddy viscosity is the r.m.s. subgrid-scale turbulence intensity. We 

have shown that the velocity scale obtained from the smaller resolved 

eddies is a better choice. Several eddy viscosity models based on this 

idea have been proposed. These models are essentially equivalent to the 

Smagorinsky (1963) and vorticity models for eddy viscosity, according to 

tests based on full and large eddy simulations. However, they may have 

other advantages. For example, one of these models is independent of 

the filter width and may be useful in inhomogeneous or transitional 

flows. 

A new subgrid scale Reynolds stress model, which we called scale 

Similarity model, has been proposed and tested. This model is not of 

the eddy viscosity type and is based on the smaller eddies of the large 

eddies. It represents the subgrid scale Reynolds stresses better than 

previous models, according to tests based on full simulations of homo­

geneous isotropic and shear turbulent flows. It does not correlate with 

eddy viscosity models and is not dissipative. A linear combination of 

the scale similarity and eddy viscosity models predicts turbulence sta­

tistics better than eddy viscosity models for homogeneous isotropic, 

rotating, and sheared turbulence. 

The effects of rotation on homogeneous isotropic turbulence have 

been studied. The experimental results of Wigeland and Nagib (1978) 
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have been predicted with accuracy. The main effects of rotation on 

turbulence have been found. Rotation destroys the phase coherence 

between the turbulent eddies in the energy cascade process, and inhibits 

the net transfer of energy from the large eddies to the smaller eddies. 

The length scales of turbulence increase at a faster rate in the pres­

ence of increased rotation, especially the transverse length scales in 

the rotation direction. The apparently contradictory experimental 

results of Traugott (1958), Ibbetson and Tritton (1975), and Wigeland 

and Nagib (1978) about faster and slower decay of turbulence intensity 

in the presence of increased rotation rates have been explained. Exper­

imental turbulence generating grids increase the initial dissipation and 

turbulence intensity as the rate of rotation increases, and this masks 

part of the effects the experiments are designed to display. The simu­

lations do not suffer from this difficulty, and we were able to sort out 

the competing effects. 

A two-equation model for the time-averaged turbulence intensity and 

rate of dissipation has been proposed. This model predicts accurately 

all of the experimental results of Wigeland and Nagib (1978) on the time 

evolution of turbulence intensity at different constant rates of 

rotation. This model may also be useful for modeling buoyancy and 

streamline curvature effects, according to an analogy made by Bradshaw 

(1969) • 

Large-eddy simulation of the experiments of Champagne, Harris, and 

Corrsin (1970) on homogeneous turbulent shear flow has been performed. 

The time evolution of turbulent kinetic energy has been predicted with 

accuracy, and the results may be valuable for developing turbulence 

models. This simulation also shows qualitative agreement with full 

simulations at low Reynolds numbers made by Shirani (1981) and Rogallo 

(1981) • 

A model for time-averaged Reynolds stresses has been proposed. 

This model is an extension and modification of the model proposed by 

Reynolds (1976). It is superior to the models proposed by Reynolds 

(1976) and Wilcox and Rubesin (1980) and similar to the one proposed by 

Launder, Reece, and Rodi (1975) for predicting homogeneous strained and 

sheared turbulence; it is also the only one that can predict homogeneous 

rotating turbulent flows. 
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Lastly, large eddy simulations of homogeneous shear flows in rotat­

ing systems have been carried out. These simulations have been focused 

on the destabilizing effects of system rotation on turbulence when the 

Richardson number R1 < O. As in previous analyses, the most destab­

ilizing case has been found for R1 = -0.25, which Ferziger and Shaanan 

(1976) showed to be the case in which turbulent stresses and strains are 

aligned. Contrary to common belief, we have shown that the limiting 

cases when R1 = 0 are not equivalent; that is, a homogeneous shear 

flow in a rotating system with g/S::a 1/2 develops more slowly than a 

pure homogeneous shear flow with the same mean shear rate and initial 

conditions. These differences are not predicted by using linear spec­

tral analysis (Bertoglio (1981», or by the mixing length model proposed 

by Bradshaw (1969) and Johnston et al. (1972). These simulations also 

show that, for pure homogeneous shear flow, the mean strain rate effects 

predominate over the mean rotation rate effects. Similarly, for homogen­

eous shear flow in a rotating system, the nonlinear effects of the mean 

shear rate and system rotation are significant. 
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shown in Fig. 9.Ia. 
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Appendix A 

"EXACT" TESTS OF SUBGRID-SCALE TURBULENCE MODELS 

Tests of subgrid-scale turbulence models, based on "exact" solu­

tions obtained from. full simulations of homogeneous turbulent flows, 

were presented in Chapter V. In this appendix, we shall present the 

equations for the correlation coefficients and the methods of obtaining 

model constants. 

As described in Chapter V, model predictions of the subgrid-scale 

Reynolds stresses are compared against the "exact" solutions. This com­

parison is done on the tensor, vector, and scalar levels suggested by 

Clark et ale (1977); these are, respectively, comparisons wi~h 

'tij 
o'tij and 

_ o'tij 
ax.- u --

J 
i oXj 

In contrast to Clark et ale (1977) and McMillan et ale (1978), we test 

combinations of turbulent models; i.e., linear combinations of eddy vis­

cosity models, scale-similarity models, and other ones described in 

Chapter 5. At any point in the flow, each of these models can be repre­

sented by 

where 

mH 

Yl .. ): ~j~ + E 

j-2 

Y1 is the "exact" quantity obtained from the full simulation. 

(A-I) 

3i ' j - 2, m + 1 are quantities derived from the large-scale field 

which one used in the turbulence model. For example, Y2 might be 

the Smagorinsky model and Y3 the scale-similarity model. 

~j' j - 2, m + 1 are the constants, 

m is the number of component models in the composite model, and 

E is the error, i.e., the difference between the "exact" and 

predicted quantity. 
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Assessment of the accuracy of the model in representing the spatial 

variations of the "exact" quantities is done by means of a multiple cor­

relation coefficient, C1 •2,3 ••• m+l, where 

and 

C2 
1.2,3 •• m+l = (A-2) 

Ici is the determinant of the matrix C defined below, 

eik is the co-factor of the ik element in the matrix C, and 

C = (Cik) is the matrix whose elements are the zero-order 

correlations defined below. 

The zero-order correlation Cik denotes the simple correlation 

coefficient between Yi and Yk and is defined by: 

(A-3) 

where 

is the zero-order standard deviation of Yi , 

Yi = Yi - < Yi > is the local fluctuation of Yi , 

< Yi > is the spatial average of Y
i 

over the entire field, and 

n is the sample size or number of points in the grid. 

The absolute value of the correlation coefficients varies between 

o and 1. It takes the value 0 if the model is totally unrelated to 

the "exact" quantity, and 1 if the model is exactly proportional to 

the "exact" quantities. These correlation coefficients are independent 

of the values used for the model constants there are several 

methods of detemining the constants, as described in Chapter V. In par­

ticular, we used three different methods: (1) doing LES and fitting the 

constant so as to predict the experimental decay of the mean turbulent 

kinetic energy, (2) equating the mean values of the "exact" and modeled 

values of the subgrid-scale Reynolds stresses on the scalar level, and 

(3) using least-square statistics on solutions of the full simulations. 
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The first two methods allow the model to predict the decay of the tur­

bulent kinetic energy, while the third minimizes the mean-square error 

~ of the prediction given by Eq. (B-1). The equation used to evaluate 

the model constants using least-square statistics is 

~j .. -2~ (A-4) s ... 
j Cll 

with no index summation. This Eq. (A-4) provides values of the model 

constants for the subgrid-scale Reynolds stresses at each of the three 

test levels. The values used in Chapter V were obtained from the scalar 

level. 
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Appendix B 

DISCARDED SUBGRID-SCALE TURBULENCE MODELS 

The following subgrid-scale turbulence models were discarded 

because they do not increase the correlation coefficient between the 

"exact" Reynolds stresses obtained from full simulations and modeled 

quantities, using the Smagorinsky and scale-similarity model. 

The model 

R - (M"& + M S - 23 0iJ,Mftl.S ftl.)/ lsi ij ik j k jk ik ,<.A ,<.A 

(B-1) 

where 

Sij 
1 

aUi aUj - '2 -+-aXj aXi 

lsi - (:6 - ) 1/2 
2 ijSij 

and 

-
or 

.. 
represent a nonlinear combination of the scale-similarity model and an 

eddy-viscosity model. However, this model yields least-squared statis­

tics similar to those of eddy-viscosity models in homogeneous isotropic 

and homogeneous sheared turbulence. Furthermore, no improvement is 

obtained by adding this model to the ones used in the text. 

The next turbulence models 

(B-2) 
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where 

or 

and 

• 

are based on the structural form of the dissipation terms of the Navier­

Stokes equations. 

These models yield statistics inferior to those of eddy viscosity 

models in isotropic turbulence, but superior to them in homogeneous 

sheared turbulence. However, the statistics show almost no improvement 

when this kind of model is added to the combination of the scale-

similarity and eddy-viscosity models. These models are also not 

strictly dissipative; therefore, it is not worthwhile to replace the 

eddy-viscosity model by this kind of model. 
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